|
黄沙鳖β-防御素基因家族的鉴定及生物信息学分析
|
Abstract:
β-防御素是一种富含半胱氨酸的小分子阳离子抗菌肽,在生物机体天然免疫中发挥重要的作用。本研究基于黄沙鳖转录组数据库和PCR验证鉴定了黄沙鳖β-防御素基因(Hs-BDs)家族,并对其进行蛋白理化性质、蛋白结构和进化关系等生物信息学分析。实验结果表明,共鉴定出18个具有完整蛋白编码区的Hs-BDs家族成员,这些Hs-BDs编码蛋白的氨基酸残基数量在59~94之间,蛋白分子量介于6759.13~10731.32 Da,等电点在8.82~10.45之间。系统进化树分析可将18个Hs-BDs家族成员分为4个亚类(Class I~IV)。随机选择部分Hs-BDs进行蛋白结构分析,这些Hs-BDs前体蛋白二级结构主要由α-螺旋、β-折叠片和无规则卷曲3种结构组成;成熟蛋白三级结构预测结果显示6个保守的半胱氨酸残基分别以Cys1-Cys5、Cys2-Cys4和Cys3-Cys6的方式连接形成3个分子内二硫键。本文结果可为进一步研究黄沙鳖β-防御素基因家族的详细功能以及抗菌肽的研发提供基础数据。
β-defensin is a small cationic antimicrobial peptide rich in cysteine, which plays an important role in innate immunity of the living organism. In this study, the β-defensin genes of Huangsha soft- shelled turtle (Hs-BDs) family were identified based on transcriptome database of Huangsha soft- shelled turtle and PCR validation, and the physicochemical properties of protein, protein structure and evolutionary relationship were also analyzed. The results showed that a total of 18 members of Hs-BDs family with complete coding regions were identified. The number of amino acid residues of these Hs-BDs proteins ranged from 59 to 94, the molecular weight ranged from 6759.13 to 10,731.32 Da, and the isoelectric point ranged from 8.82 to 10.45. The 18 members of Hs-BDs family were divided into four subgroups (Class I~IV) according to the phylogenetic tree analysis. Some Hs-BDs were randomly selected for protein structure analysis and the results showed that the secondary structures of Hs-BDs preprotein are mainly composed of α-helix, β-sheet and random coil. Six conserved cysteine residues were linked to form three intramolecular disulfide bonds in the form of Cys1-Cys5, Cys2-Cys4 and Cys3-Cys6, respectively. The results of this study can provide basic data for further research on the detailed functions of β-defensin gene family and the development of antimicrobial peptides.
[1] | 阮高伟. 动物防御素的研究进展[J]. 农业技术与装备, 2013(23): 71-73. |
[2] | Sangeeta, K. and Yenugu, S. (2019) Male Reproductive Tract Antimicrobial Expression in the Extremes of Ages of Rats. Gene, 710, 218-232. https://doi.org/10.1016/j.gene.2019.05.053 |
[3] | Zhuang, C.J., Huo, H.J., Yang, N., et al. (2021) Characterization of Antibacterial Activities and the Related Mechanisms of a β-Defensin in Turbot (Scophthalmus maximus). Aquaculture, 541, Article ID: 736839.
https://doi.org/10.1016/j.aquaculture.2021.736839 |
[4] | 涂健, 李芳果, 李怡彤, 等. 稳定表达禽β防御素6的DF-1细胞系的建立及其抑菌活性[J]. 微生物学通报, 2021, 48(3): 778-786. |
[5] | 李怡彤, 耿姝, 殷冬冬, 等. 禽β-防御素6和9基因的克隆、表达及活性分析[J]. 云南农业大学学报(自然科学), 2020, 35(6): 996-1003. |
[6] | 黄梦阳, 李杨, 张林云, 等. 瓢鸡3个防御素基因(AvBD4、AvBD5、AvBD14)的Bi-PASA分子标记与沙门菌易感性的相关性研究[J]. 中国家禽, 2019, 41(19): 10-15. |
[7] | Wang, M.Z., Zeng, W.X., Zang, Z.G., et al. (2020) The Improvement of Immune Effect of Recombinant Human Beta-Defensin 2 on Hepatitis B Vaccine in Mice. Viral Immunology, 34, 96-111. https://doi.org/10.1089/vim.2020.0052 |
[8] | Masuda, N., Mantani, Y., Yuasa, H., et al. (2018) Immunohistochemical Study on the Distribution of β-Defensin 1 and β-Defensin 2 throughout the Respiratory Tract of Healthy Rats. Journal of Veterinary Medical Science, 80, 395-404.
https://doi.org/10.1292/jvms.17-0686 |
[9] | Kim, J., Yang, Y.L. and Jang, Y.-S. (2019) Human β-Defensin 2 Is Involved in CCR2-Mediated Nod2 Signal Transduction, Leading to Activation of the Innate Immune Response in Macrophages. Immunobiology, 224, 502-510.
https://doi.org/10.1016/j.imbio.2019.05.004 |
[10] | Zhang, L.Q. (2020) Disulfide Bonds Affect the Binding Sites of Human β Defensin Type 3 on Negatively Charged Lipid Membranes. The Journal of Physical Chemistry B, 124, 2088-2100. https://doi.org/10.1021/acs.jpcb.9b10529 |
[11] | 付蓝宝, 于嘉林, 刘伟华. 防御素的生物学特性及其抗病基因工程[J]. 遗传, 2011, 33(5): 512-519. |
[12] | Benato, F., Dalla Valle, L., Skobo, T., et al. (2013) Biomolecular Identification of Beta-Defensin-Like Peptides from the Skin of the Soft-Shelled Turtle Apalone spinifera. Journal of Experimental Zoology. Molecular and Developmental Evolution, 320, 210-217. https://doi.org/10.1002/jez.b.22495 |
[13] | 刘雪莲. 爬行纲β-defensin基因多态性分析及基于真核表达的生物学功能验证[D]: [硕士学位论文]. 大连: 大连理工大学, 2017. |
[14] | 许飘尹, 杨廷雅, 胡大胜, 等. 黄沙鳖β-防御素基因克隆及其表达分析[J]. 南方农业学报, 2020, 51(9): 2269-2277. |
[15] | 滕忠作, 叶香尘, 张盛. 黄沙鳖高密度健康养殖技术[J]. 农村百事通, 2018(11): 35-36. |
[16] | 滕忠作, 叶香尘, 张盛, 等. 黄沙鳖高密度健康培育技术试验[J]. 科学养鱼, 2017(12): 41-42. |
[17] | Li, A.C. and Peng, X.B. (2021) Comparison of the Force Fields on Monomeric and Fibrillar PHF6 of Tau Protein. Biophysical Chemistry, 277, Article ID: 106631. https://doi.org/10.1016/j.bpc.2021.106631 |
[18] | 刘杰, 黄艳华, 黄钧, 等. 黄沙鳖源嗜水气单胞菌的致病力与毒力基因型相关性[J]. 中国水产科学, 2015, 22(4): 698-706. |
[19] | Fu, J.P., Chen, S.N., Zhao, X., et al. (2018) Identification and Characterization of the Interferon-γ-Inducible Lysosomal Thiol Reductase Gene in Chinese Soft-Shelled Turtle, Pelodiscus sinensis. Developmental and Comparative Immunology, 90, 55-59. https://doi.org/10.1016/j.dci.2018.08.019 |
[20] | 魏薇, 李海军, 王鑫, 等. 家畜防御素体内组织表达及体外表达研究进展[J]. 畜牧与饲料科学, 2019, 40(4): 52-57. |
[21] | Natsumi, M., Youhei, M., Hideto, Y., et al. (2018) Immunohistochemical Study on the Distribution of β-defensin 1 and β-defensin 2 throughout the Respiratory Tract of Healthy Rats. The Journal of Veterinary Medical Science, 80, 395-404.
https://doi.org/10.1292/jvms.17-0686 |
[22] | Chao, H., Yang, X., Jing, H., et al. (2019) Porcine Beta-Defensin 2 Provides Protection against Bacterial Infection by a Direct Bactericidal Activity and Alleviates Inflammation via Interference with the TLR4/NF-κB Pathway. Frontiers in Immunology, 10, Article No. 2289. https://doi.org/10.3389/fimmu.2019.01673 |
[23] | 阮高伟. 动物防御素的研究进展[J]. 农业技术与装备, 2013(23): 71-73. |
[24] | Victoria Gomez, M., Margarita, R., Philipp, N., et al. (2021) Insights into the Micelle-Induced β-Hairpin-to-α-Helix Transition of a LytA-Derived Peptide by Photo-CIDNP Spectroscopy. International Journal of Molecular Sciences, 22, 6666. https://doi.org/10.3390/ijms22136666 |
[25] | 郑云峰. 抗菌肽的作用机理、生物学作用及其在畜牧中的应用研究[J]. 饲料与畜牧, 2012(5): 24-26. |
[26] | Zhang, H.H. and Wong, E.A. (2019) Expression of Avian β-Defensin mRNA in the Chicken Yolk Sac. Developmental and Comparative Immunology, 95, 89-95. https://doi.org/10.1016/j.dci.2019.02.006 |
[27] | Moura, T.A., Junior, R.L.R. and Rocha, M.S. (2021) Caffeine Modulates the Intercalation of Drugs on DNA: A Study at the Single Molecule Level. Biophysical Chemistry, 277, Article ID: 106653.
https://doi.org/10.1016/j.bpc.2021.106653 |