|
射流冲击不同形状凸起热源的数值模拟研究
|
Abstract:
冲击射流是一种换热性能突出的散热方式,被广泛应用于电子信息、航空航天、军工国防等领域。该研究以水为工质,数值模拟研究了二维层流射流冲击矩形、三角形及圆弧形凸起热源的流动与换热特性,对比研究了冲击距离(h/W)在1~10范围内,雷诺数在50~250范围内的换热规律。研究表明:体积夹带量随着雷诺数与冲击距离的增加而增加,且几乎不受凸起热源形状变化的影响。在滞止点附近,三角形凸起热源的局部换热效率极高,在冲击距离h/W = 1、Re = 50时,其最大换热系数是矩形的1.84倍,圆弧形的1.77倍。从热阻与泵功角度分析,冲击距离h/W = 1的矩形凸起热源有着最优的换热性能。该研究丰富了冲击射流强化换热理论,为解决高热流密度冷却技术提供了理论依据。
Impinging jet cooling is an outstanding heat dissipation method, which has been widely applied in the areas of electronics, aerospace, military and defense, automobile and medical industries. Using water as the working fluid, the flow and heat transfer performance of two-dimensional laminar jet impinging on rectangular, triangular and circular convex heat sources are numerically studied, and systematically evaluated with the impact distance (h/W) in the range of 1~10 and Reynolds number in the range of 50~250. The results show that the volume entrainment increases with the increase of Reynolds number and impact distance, without much affected by the convex shape. Near the stagnation point, the local heat exchange efficiency of triangular heat source is the best one. When the h/W = 1 and Re = 50, its maximum heat exchange coefficient is 1.84 times that of rectangle and 1.77 times that of circular arc, respectively. From the thermal resistance and pump power perspec-tives, the rectangular heat source with h/W = 1 shows the best performance. This study enriches the heat transfer theory of jet cooling, providing design guidelines for the cooling technology towards high heat flux.
[1] | Guo, Z.Y., Li, D.Y. and Wang, B.X. (1998) A Novel Concept for Convective Heat Transfer Enhancement. International Journal of Heat & Mass Transfer, 41, 2221-2225. https://doi.org/10.1016/S0017-9310(97)00272-X |
[2] | 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004. |
[3] | Ekkad, S.V. and Singh, P.A. (2021) Modern Review on Jet Impingement Heat Transfer Methods. International Journal of Heat & Mass Transfer, 143, Article ID: 064001. https://doi.org/10.1115/1.4049496 |
[4] | 朱丽瑶, 曹建光, 董丽宁, 等. 航天器高热流射流冷却技术研究综述[J]. 上海航天, 2016, 33(2): 7. |
[5] | de Oliveira, P., et al. (2017) Performance Assessment of Single and Multiple Jet Impingement Configurations in a Refrigeration-Based Compact Heat Sink for Electronics Cooling. Journal of Electronic Packaging: Transactions of the ASME, 139, Article ID: 031005. https://doi.org/10.1115/1.4036817 |
[6] | Draksler, M. and Konar, B. (2011) Analysis of Heat Transfer and Flow Characteristics in Turbulent Impinging Jet. Nuclear Engineering and Design, 241, 1248-1254. https://doi.org/10.1016/j.nucengdes.2010.03.037 |
[7] | Lee, H.G., Yoon, H.S. and Ha, M.Y. (2008) A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Re-gion for Different Channel Heights. International Journal of Heat & Mass Transfer, 51, 4055-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.015 |
[8] | Carcasci, C., Cocchi, L., Facchini, B., et al. (2016) Impingement Cooling Experimental Investigation Using Different Heating Elements. Energy Procedia, 101, 18-25. https://doi.org/10.1016/j.egypro.2016.11.003 |
[9] | Yang, Y.T., Wei, T.C. and Wang, Y.H. (2011) Numerical Study of Turbulent Slot Jet Impingement Cooling on a Semi- Circular Concave Surface. International Journal of Heat & Mass Transfer, 54, 482-489.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.021 |
[10] | Buonomo, B., Manca, O., Bondareva, N.S., et al. (2019) Thermal and Fluid Dynamic Behaviors of Confined Slot Jets Impinging on an Isothermal Moving Surface with Nanofluids. Energies, 12, 74. https://doi.org/10.3390/en12112074 |
[11] | 陈庆光, 徐忠, 张永建. 湍流冲击射流流动与传热的数值研究进展[J]. 力学进展, 2002, 32(1): 92-108. |
[12] | 谭蕾, 张靖周, 谭晓茗. 非均匀横流作用下冲击射流冷却的数值研究[J]. 航空动力学报, 2006, 21(3): 528-532. |
[13] | 陈庆光, 吴玉林, 张永建, 等. 矩形管湍流冲击射流流动与传热的数值研究[J]. 热能动力工程, 2005, 20(5): 4. |
[14] | 张永恒, 周勇, 王良璧. 圆形冲击射流传热性能的实验研究[J]. 热科学与技术, 2006, 5(1): 38-43. |
[15] | Lin, Z.H., et al. (1997) Heat Transfer Behaviors of a Confined Slot Jet Impingement. International Journal of Heat and Mass Transfer, 40, 1095-1107. https://doi.org/10.1016/0017-9310(96)00135-4 |
[16] | Kanna, P.R. and Das, M.K. (2006) Numerical Simulation of Two-Dimensional Laminar Incompressible Wall Jet Flow under Backward-Facing Step. Journal of Fluids Engineering, 128, 1023-1035. https://doi.org/10.1115/1.2243298 |
[17] | Ekiciler, R., et al. (2018) Convective Heat Transfer Inves-tigation of a Confined Air Slot-Jet Impingement Cooling on Corrugated Surfaces with Different Wave Shapes. Journal of Heat Transfer, 141, Article ID: 022202.
https://doi.org/10.1115/1.4041954 |
[18] | Chan, C.W., Leung, K., Jambunathan, S., et al. (2002) Heat Transfer Char-acteristics of a Slot Jet Impinging on a Semi- Circular Convex Surface. International Journal of Heat and Mass Transfer, 45, 993-1006.
https://doi.org/10.1016/S0017-9310(01)00217-4 |
[19] | Striegel, S.A. and Diller, T.S. (1984) An Analysis of the Thermal Entrainment Effect of Jet Impingement Heat Transfer. Journal of Heat Transfer, 106, 804-810. https://doi.org/10.1115/1.3246755 |
[20] | Ganguly, A., Pramanik, S., Mookherjee, O., et al. (2021) Numerical Inves-tigation of Laminar Impinging Jet Cooling of a Protruded Heat Source. International Journal of Heat and Mass Transfer, 143, Article ID: 122301.
https://doi.org/10.1115/1.4052117 |
[21] | 董志勇. 射流力学[M]. 北京: 科学出版社, 2005. |
[22] | 周光炯, 严宗毅, 许世雄, 等. 流体力学下册[M]. 北京: 高等教育出版社, 2011. |