全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

担子菌Mating-Type序列生物信息学分析
Bioinformatics Analysis of Mating-Type Sequence of Basidiomycetes

DOI: 10.12677/AMB.2022.111003, PP. 22-30

Keywords: 草菇,担子菌,交配型,异宗配合,生物信息学
Volvariella volvacea
, Basidiomycotina, Mating-Type, Heterothallism, Bioinformatics

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:以草菇为研究对象,对担子菌mating-type同源序列中的HD位点为靶标进行生物信息学初步分析。方法:应用在线生物信息学软件预测HD序列的理化性质、疏水性/亲水性、导肽、跨膜结构、三维结构、功能结构域,并构建了同亚门中其他物种该蛋白家族的系统进化树。结果:同源mating-type序列中HD基因位点的氨基酸不稳定性指数在56%左右,且无明显的信号肽、导肽和跨膜结构域,三维结构由3个α-螺旋和少数转角二级结构组成,七种食用菌在氨基酸序列呈现较低的相似性。结论:同源mating-type序列的HD1、HD2蛋白稳定性差,无信号肽、导肽、跨膜结构,无β-折叠,在N-J进化树中不同物种间该氨基酸序列相似性极低,表明HD位点具有丰富的多样性,且结构性简单。
Objective: The objective is to take Volvariella volvacea as the research object, and conduct a preliminary bioinformatics analysis on the HD site in the mating-type homologous sequence of Basidiomycetes. Methods: Using online bioinformatics software to predict the physical and chemical properties, hydrophobicity/hydrophilicity, guide peptide, transmembrane structure, three-dimensional structure, and functional domains of HD sequences, and construct a system of this protein family of other species in the same subphylum evolutionary tree. Results: The amino acid instability index of the HD locus in the homologous mating-type sequence is about 56%, and there is no obvious signal peptide, guide peptide, and transmembrane domain. The three-dimensional structure consists of 3 α-helices and a few turns in terms of secondary structure, and the seven edible fungi show low similarity in amino acid sequence. Conclusion: The HD1 and HD2 proteins with homologous mating-type sequences have poor stability, no signal peptide, guide peptide, transmembrane structure, and no β-sheet. The amino acid sequence similarity between different species in the N-J evolutionary tree is extremely low, indicating that HD sites are rich in diversity and simple in structure.

References

[1]  戴玉成, 庄剑云. 中国菌物已知种数[J]. 菌物学报, 2010, 29(5): 625-628.
[2]  Kües, U., James, T.Y. and Heitman, J. (2011) Mating Type in Basidiomycetes: Unipolar, Bipolar and Tetrapolar Patterns of Sexuality. In: Puggeler, S. and Wuostemeyer, J., Eds., Evolution of Fungi and Fungal-Like Organisms. The Mycota, Vol. XIV, Springer, Heidelberg, 97-160.
https://doi.org/10.1007/978-3-642-19974-5_6
[3]  Heitman, J., Sun, S. and James, T.Y. (2013) Evolution of Fungal Sexual Reproduction. Mycologia, 105, 1-27.
https://doi.org/10.3852/12-253
[4]  James, T.Y., Sun, S., Li, W.J., Heitman, J., Kuo, H.C., Lee, Y.H., Asiegbu, F.O. and Olson (2013) Polyporales Genomes Reveal the Genetic Architecture Underlying Tetrapolar and Bipolar Mating Systems. Mycologia, 105, 1374-1390.
https://doi.org/10.3852/13-162
[5]  Nieuwenhuis, B.P.S., Billiard, S., Vuilleumier, S., Petit, E., Hood, M.E. and Giraud, T. (2013) Evolution of Unifore and Bifactorial Sexual Compatibility Systems in Fungi. Heredity, 111, 445-455.
https://doi.org/10.1038/hdy.2013.67
[6]  Kües, U. and Casselton, L.A. (1993) The Origin of Multiple Mating Types in Mushrooms. Journal of Cell Science, 104, 227-230.
https://doi.org/10.1242/jcs.104.2.227
[7]  Casselton, L.A. and Kues, U. (2007) The Origin of Multiple Mating Types in the Model Mushrooms Coprinopsis cinerea and Schizophyllum commune. In: Heitman, J., Kronstad, J.W., Taylor, J.W. and Casselton, L.A., Eds., Sex in Fungi. Molecular Determination and Evolutionary Implications, ASM Press, Washington DC, 283-300.
https://doi.org/10.1128/9781555815837.ch17
[8]  Fraser, J.A., Hsueh, Y.P., Findley, K.M. and Heitman, J. (2007) Evolution of the Mating-Type Locus: The Basidiomycetes. In: Heitman, J., Kronstad, J., Taylor, J. and Casselton, L., Eds., Sex in Fungi: Molecular Determination and Evolutionary Implications, ASM Press, Washington DC, 19-34.
https://doi.org/10.1128/9781555815837.ch2
[9]  付海辉, 辛培尧, 许玉兰, 等. 几种经济植物UFGT基因的生物信息学分析[J]. 基因组学与应用生物学, 2010, 30(1): 92-102.
[10]  周军, 姚泉洪, 彭日荷, 等. 巨峰葡萄查尔酮异构酶基因克隆及表达分析[J]. 西北植物学报, 2009, 29(9): 1723-1729.
[11]  金元昌, 向育君, 李景鹏. 重组人促性腺激素释放激素及导肽的分离纯化与活性分析[J]. 生物技术通报, 2008(3): 87-91.
[12]  王希成. 生物化学[M]. 北京: 清华大学出版社, 2001: 46.
[13]  薛庆中. DNA和蛋白质序列数据分析工具[M]. 北京: 科学出版社, 2009: 72-100.
[14]  王镜岩, 朱圣庚, 徐长法. 生物化学: 上册(3版) [M]. 北京: 高等教育出版社, 2002: 222-223.
[15]  Van Peer, A.F., Park, S.Y., Shin, P.G., et al. (2011) Comparative Genomics of the Mating-Type Loci of the Mushroom Flammulina velutipes Reveals Widespread Synteny and Recent Inversions. PLoS ONE, 6, e22249.
https://doi.org/10.1371/journal.pone.0022249
[16]  鲍大鹏. 担子菌类食用菌交配型位点结构的研究进展[J]. 菌物学报, 2019, 38(12): 2061-2077.
[17]  Duboule, D. (1994) Guidebook to the Homeobox Genes. Oxford University Press, New York, 27-71.
[18]  Kües, U., G?ttgens, B., Stratmann, R., Richardson, W.V., O’Shea, S.F. and Casselton, L.A. (1994) A Chimeric Homeodomain Protein Causes Self-Compatibility and Constitutive Sexual Development in the Mushroom Coprinus cinereus. The EMBO Journal, 13, 4054-4059.
https://doi.org/10.1002/j.1460-2075.1994.tb06722.x
[19]  Asante-Owusu, R.N., Banham, A.H., B?hnert, H.U., Mellor, E.J.C. and Casselton, L.A. (1996) Heterodimerization between Two Classes of Homeodomain Proteins in the Mushroom Coprinus cinereus Brings Together Potential DNA-Binding and Activation Domains. Gene, 172, 25-31.
https://doi.org/10.1016/0378-1119(96)00177-1
[20]  Schlesinger, R., Kahmann, R. and K?mper, J. (1997) The Homeodomains of the Heterodimeric bE and bW Proteins of Ustilago maydis Are Both Critical for Function. Molecular & General Genetics: MGG, 254, 514-519.
https://doi.org/10.1007/PL00008609

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413