全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Plastic-Free Bioactive Paper Coatings, Way to Next-Generation Sustainable Paper Packaging Application: A Review

DOI: 10.4236/gsc.2022.122002, PP. 9-27

Keywords: Biopolymers, Paper, Coatings, Starch, Itaconic Acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrocarbon-derived polymers have been utilized in various packaging applications, such as pouches, films, foamed containers, rigid containers, and multiple components for medical, food, and other uses. However, mounting environmental considerations increased knowledge of the harmful consequences of greenhouse gas emissions, landfills, and disposal difficulties. Rising oil prices are forcing researchers and businesses to produce environmentally friendly packaging. These new sustainability requirements are particularly suited to biomass-based products, instead of petroleum sources; sourced from biomass entities. More functional and performance-oriented packaging is necessary despite the widespread usage of bio-based materials like paper. As a result, the transition to eco-friendly packaging will necessitate the improvement of existing bio-derived packaging and the development of new bio-derived materials like biopolymer paper coatings. The goal of this brief study was to give a synopsis of the present status of bio-derived packaging and an insight into ongoing and prospective developments in sustainable next-generation paper coatings for the packaging industry.

References

[1]  Rastogi, V. and Samyn, P. (2015) Bio-Based Coatings for Paper Applications. Coatings, 5, 887-930.
https://doi.org/10.3390/coatings5040887
[2]  Samyn, P., Schoukens, G., Van den Abbeele, H., Vonck, L. and Stanssens, D. (2011) Application of Polymer Nanoparticle Coating for Tuning the Hydrophobicity of Cellulosic Substrates. Journal of Coatings Technology and Research, 8, 363-373.
https://doi.org/10.1007/s11998-010-9309-7
[3]  Nair, A., Kansal, D., Khan, A. and Rabnawaz, M. (2021) New Alternatives to Single-Use Plastics: Starch and Chitosan-Graft-Polydimethylsiloxane-Coated Paper for Water- and Oil-Resistant Applications. Nano Select, 3, 459-470.
https://doi.org/10.1002/nano.202100107
[4]  Khwaldia, K., Arab-Tehrany, E. and Desobry, S. (2010) Biopolymer Coatings on Paper Packaging Materials. Comprehensive Reviews in Food Science and Food Safety, 9, 82-91.
https://doi.org/10.1111/j.1541-4337.2009.00095.x
[5]  Gong, X., Zhang, L., He, S., Jiang, S., Wang, W. and Wu, Y. (2020) Rewritable Superhydrophobic Coatings Fabricated Using Water-Soluble Polyvinyl Alcohol. Materials & Design, 196, Article ID: 109112.
https://doi.org/10.1016/j.matdes.2020.109112
[6]  Samyn, P., Deconinck, M., Schoukens, G., Stanssens, D., Vonck, L. and Van den Abbeele, H. (2012) Synthesis and Characterization of Imidized Poly(styrene-maleic anhydride) Nanoparticles in Stable Aqueous Dispersion. Polymers for Advanced Technologies, 23, 311-325.
https://doi.org/10.1002/pat.1871
[7]  Tajeddin, B. (2014) Cellulose-Based Polymers for Packaging Applications. In: Lignocellulosic Polymer Composites: Processing, Characterization, and Properties, John Wiley & Sons, Inc., Hoboken, 477-498.
https://doi.org/10.1002/9781118773949.ch21
[8]  Aday, M.S., Caner, C. and Rahvalı, F. (2011) Effect of Oxygen and Carbon Dioxide Absorbers on Strawberry Quality. Postharvest Biology and Technology, 62, 179-187.
https://doi.org/10.1016/j.postharvbio.2011.05.002
[9]  Ahvenainen, R., Eilamo, M. and Hurme, E. (1997) Detection of Improper Sealing and Quality Deterioration of Modified-Atmosphere-Packed Pizza by a Colour Indicator. Food Control, 8, 177-184.
https://doi.org/10.1016/S0956-7135(97)00046-7
[10]  Bai, H., Zhou, G., Hu, Y., Sun, A., Xu, X., Liu, X. and Lu, C. (2017) Traceability Technologies for Farm Animals and Their Products in China. Food Control, 79, 35-43.
https://doi.org/10.1016/j.foodcont.2017.02.040
[11]  Han, J.-W., Ruiz-Garcia, L., Qian, J.-P. and Yang, X.-T. (2018) Food Packaging: A Comprehensive Review and Future Trends. Comprehensive Reviews in Food Science and Food Safety, 17, 860-877.
https://doi.org/10.1111/1541-4337.12343
[12]  Perpétuo, G.L., Gálico, D.A., Fugita, R.A., Castro, R.A.E., Eusébio, M.E.S., Treu-Filho, O., Silva, A.C.M. and Bannach, G. (2013) Thermal Behavior of Some Antihistamines. Journal of Thermal Analysis and Calorimetry, 111, 2019-2028.
https://doi.org/10.1007/s10973-012-2247-0
[13]  Tsakona, M. and Rucevska, I. (2020) Baseline Report on Plastic Waste-Basel Convention. United Nations, New York, 1-68.
https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/554/original/UNEP-CHW-PWPWG.1-INF-4.English.pdf?1594295332
[14]  Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Advances, 3, e1700782.
https://doi.org/10.1126/sciadv.1700782
[15]  World Economic Forum (2016) The New Plastics Economy: Rethinking the Future of Plastics. Ellen MacArthur Found, Cowes, 120.
http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf
[16]  Wu, F., Misra, M. and Mohanty, A.K. (2021) Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Progress in Polymer Science, 117, Article ID: 101395.
https://doi.org/10.1016/j.progpolymsci.2021.101395
[17]  Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. and Mohanty, A.K. (2013) Biobased Plastics and Bionanocomposites: Current Status and Future Opportunities. Progress in Polymer Science, 38, 1653-1689.
https://doi.org/10.1016/j.progpolymsci.2013.05.006
[18]  Zhang, H., Hortal, M., Jordá-Beneyto, M., Rosa, E., Lara-Lledo, M. and Lorente, I. (2017) ZnO-PLA Nanocomposite Coated Paper for Antimicrobial Packaging Application. LWT, 78, 250-257.
https://doi.org/10.1016/j.lwt.2016.12.024
[19]  Hladnik, A. (2002) Characterization of Pigments in Coating Formulations for High-End Ink-Jet Papers. Dyes and Pigments, 54, 253-263.
https://doi.org/10.1016/S0143-7208(02)00050-5
[20]  Kugge, C. and Johnson, B. (2008) Improved Barrier Properties of Double Dispersion Coated Liner. Progress in Organic Coatings, 62, 430-435.
https://doi.org/10.1016/j.porgcoat.2008.03.006
[21]  Daoud, W.A., Xin, J.H. and Tao, X. (2004) Superhydrophobic Silica Nanocomposite Coating by a Low-Temperature Process. Journal of the American Ceramic Society, 87, 1782-1784.
https://doi.org/10.1111/j.1551-2916.2004.01782.x
[22]  Dufresne, A. (2013) Nanocellulose: A New Ageless Bionanomaterial. Materials Today, 16, 220-227.
https://doi.org/10.1016/j.mattod.2013.06.004
[23]  Sanchez-Garcia, M.D. and Lagaron, J.M. (2010) Novel Clay-Based Nanobiocomposites of Biopolyesters with Synergistic Barrier to UV Light, Gas, and Vapour. Journal of Applied Polymer Science, 118, 188-199.
https://doi.org/10.1002/app.31986
[24]  Cha, D.S. and Chinnan, M.S. (2004) Biopolymer-Based Antimicrobial Packaging: A Review. Critical Reviews in Food Science and Nutrition, 44, 223-237.
https://doi.org/10.1080/10408690490464276
[25]  Guerrero, M.P., Bertrand, F. and Rochefort, D. (2011) Activity, Stability and Inhibition of a Bioactive Paper Prepared by Large-Scale Coating of Laccase Microcapsules. Chemical Engineering Science, 66, 5313-5320.
https://doi.org/10.1016/j.ces.2011.07.026
[26]  Chen, S., Li, X., Li, Y. and Sun, J. (2015) Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric. ACS Nano, 9, 4070-4076.
https://doi.org/10.1021/acsnano.5b00121
[27]  Rong, M.Z., Zhang, M.Q. and Ruan, W.H. (2006) Surface Modification of Nano-Scale Fillers for Improving Properties of Polymer Nanocomposites: A Review. Materials Science and Technology, 22, 787-796.
https://doi.org/10.1179/174328406X101247
[28]  Lopez-Rubio, A., Fabra, M.J., Martinez-Sanz, M., Mendoza, S. and Vuong, Q.V. (2017) Biopolymer-Based Coatings and Packaging Structures for Improved Food Quality. Journal of Food Quality, 2017, Article ID: 2351832.
https://doi.org/10.1155/2017/2351832
[29]  Guo, Y., Guo, J., Li, S., Li, X., Wang, G. and Huang, Z. (2013) Properties and Paper Sizing Application of Waterborne Polyurethane Emulsions Synthesized with TDI and IPDI. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 427, 53-61.
https://doi.org/10.1016/j.colsurfa.2013.03.017
[30]  Brenner, T., Kiessler, B., Radosta, S. and Arndt, T. (2016) Processing Surface Sizing Starch Using Oxidation, Enzymatic Hydrolysis and Ultrasonic Treatment Methods—Preparation and Application. Carbohydrate Polymers, 138, 273-279.
https://doi.org/10.1016/j.carbpol.2015.10.086
[31]  Xiong, H., Tang, S., Tang, H. Zou, P. (2008) The Structure and Properties of a Starch-Based Biodegradable Film. Carbohydrate Polymers, 71, 263-268.
https://doi.org/10.1016/j.carbpol.2007.05.035
[32]  Jonhed, A. andersson, C. and Järnström, L. (2008) Effects of Film Forming and Hydrophobic Properties of Starches on Surface Sized Packaging Paper. Packaging Technology and Science, 21, 123-135.
https://doi.org/10.1002/pts.783
[33]  Domene-López, D., Guillén, M.M., Martin-Gullon, I., García-Quesada, J.C. and Montalbán, M.G. (2018) Study of the Behavior of Biodegradable Starch/Polyvinyl Alcohol/Rosin Blends. Carbohydrate Polymers, 202, 299-305.
https://doi.org/10.1016/j.carbpol.2018.08.137
[34]  Ni, S., Zhang, H., Godwin, P.M., Dai, H. and Xiao, H. (2018) ZnO Nanoparticles Enhanced Hydrophobicity for Starch Film and Paper. Materials Letters, 230, 207-210.
https://doi.org/10.1016/j.matlet.2018.07.075
[35]  Li, W., Xu, Z., Wang, Z. and Xing, J. (2018) One-Step Quaternization/Hydroxypropylsulfonation to Improve Paste Stability, Adhesion, and Film Properties of Oxidized Starch. Polymers (Basel), 10, 1110.
https://doi.org/10.3390/polym10101110
[36]  Du, Y., Liu, J., Wang, B., Li, H. and Su, Y. (2018) The Influence of Starch-Based Bio-Latex on Microstructure and Surface Properties of Paper Coating. Progress in Organic Coatings, 116, 51-56.
https://doi.org/10.1016/j.porgcoat.2017.12.009
[37]  Ondaral, S., Kurtuluş, O.Ç., Öztürk, G., Ergün, M.E. and Yakın, İ. (2018) Aldehyde Starch Complexes: Adsorption on Cellulose Model Film and Performance as a Strength Additive for Papermaking. BioResources, 13, 4470-4483.
https://doi.org/10.15376/biores.13.2.4470-4483
[38]  Wang, Y., Chang, C. and Zhang, L. (2010) Effects of Freezing/Thawing Cycles and Cellulose Nanowhiskers on Structure and Properties of Biocompatible Starch/PVA Sponges. Macromolecular Materials and Engineering, 295, 137-145.
https://doi.org/10.1002/mame.200900212
[39]  Fatehi, P. and Xiao, H. (2010) Effect of Cationic PVA Characteristics on Fiber and Paper Properties at Saturation Level of Polymer Adsorption. Carbohydrate Polymers, 79, 423-428.
https://doi.org/10.1016/j.carbpol.2009.08.029
[40]  Liu, X., Fatehi, P., Ni, Y. and Xiao, H. (2010) Using Cationic Polyvinyl Alcohol (C-PVA) to Improve the Strength of Wood-Free Papers Containing High-Yield Pulp (HYP). Holzforschung, 64, 563-569.
https://doi.org/10.1515/hf.2010.078
[41]  Mittal, A., Garg, S., Kohli, D., Maiti, M., Jana, A.K. and Bajpai, S. (2016) Effect of Cross Linking of PVA/Starch and Reinforcement of Modified Barley Husk on the Properties of Composite Films. Carbohydrate Polymers, 151, 926-938.
https://doi.org/10.1016/j.carbpol.2016.06.037
[42]  Ismail, H. and Zaaba, N.F. (2014) Effects of Poly(vinyl alcohol) on the Performance of Sago Starch Plastic Films. Journal of Vinyl and Additive Technology, 20, 72-79.
https://doi.org/10.1002/vnl.21348
[43]  Zhai, M., Yoshii, F., Kume, T. and Hashim, K. (2002) Syntheses of PVA/Starch Grafted Hydrogels by Irradiation. Carbohydrate Polymers, 50, 295-303.
https://doi.org/10.1016/S0144-8617(02)00031-0
[44]  Garcia, P.S., Baron, A.M., Yamashita, F., Mali, S., Eiras, D. and Grossmann, M.V.E. (2018) Compatibilization of Starch/Poly(butylene adipate-co-terephthalate) Blown Films Using Itaconic Acid and Sodium Hypophosphite. Journal of Applied Polymer Science, 135, Article ID: 46629.
https://doi.org/10.1002/app.46629
[45]  Swain, S.K., Prusty, G. and Das, R. (2012) Sonochemical Compatibility of Polyvinyl Alcohol/Polyacrylic Acid Blend in Aqueous Solution. Journal of Macromolecular Science, Part B, 51, 580-589.
https://doi.org/10.1080/00222348.2011.609782
[46]  Follain, N., Joly, C., Dole, P. and Bliard, C. (2005) Properties of Starch Based Blends. Part 2. Influence of Poly Vinyl Alcohol Addition and Photocrosslinking on Starch Based Materials Mechanical Properties. Carbohydrate Polymers, 60, 185-192.
https://doi.org/10.1016/j.carbpol.2004.12.003
[47]  Meng, F., Zhang, Y., Xiong, Z., Wang, G., Li, F. and Zhang, L. (2018) Mechanical, Hydrophobic and Thermal Properties of an Organic-Inorganic Hybrid Carrageenan-Polyvinyl Alcohol Composite Film. Composites Part B: Engineering, 143, 1-8.
https://doi.org/10.1016/j.compositesb.2017.12.009
[48]  Kokhanovskaya, O.A. and Likholobov, V.A. (2018) Synthesis of Hydrophobic Aerogel Heat Insulation Materials Based on Polyvinyl Alcohol/Carbon Black Composite. Russian Journal of Applied Chemistry, 91, 78-81.
https://doi.org/10.1134/S1070427218010123
[49]  Zhang, R., Wan, W., Qiu, L., Wang, Y. and Zhou, Y. (2017) Preparation of Hydrophobic Polyvinyl Alcohol Aerogel via the Surface Modification of Boron Nitride for Environmental Remediation. Applied Surface Science, 419, 342-347.
https://doi.org/10.1016/j.apsusc.2017.05.044
[50]  Pan, Y., Shi, K., Peng, C., Wang, W., Liu, Z. and Ji, X. (2014) Evaluation of Hydrophobic Polyvinyl-Alcohol Formaldehyde Sponges as Absorbents for Oil Spill. ACS Applied Materials & Interfaces, 6, 8651-8659.
https://doi.org/10.1021/am5014634
[51]  Pan, Y., Wang, W., Peng, C., Shi, K., Luo, Y. and Ji, X. (2014) Novel Hydrophobic Polyvinyl Alcohol-Formaldehyde Foams for Organic Solvents Absorption and Effective Separation. RSC Advances, 4, 660-669.
https://doi.org/10.1039/C3RA43907K
[52]  Maqueira, L., Valdés, A.C., Iribarren, A. and de Melo, C.P. (2013) Preparation and Characterization of Hydrophobic Porphyrin Nanoaggregates Dispersed in Polyvinyl Alcohol Films. Journal of Porphyrins and Phthalocyanines, 17, 283-288.
https://doi.org/10.1142/S1088424613500028
[53]  Bednarz, S., Wesołowska-Piętak, A., Konefał, R. and Świergosz, T. (2018) Persulfate Initiated Free-Radical Polymerization of Itaconic Acid: Kinetics, End-Groups and Side Products. European Polymer Journal, 106, 63-71.
https://doi.org/10.1016/j.eurpolymj.2018.07.010
[54]  Duquette, D. and Dumont, M.-J. (2018) Influence of Chain Structures of Starch on Water Absorption and Copper Binding of Starch-Graft-Itaconic Acid Hydrogels. Starch-Stärke, 70, Article ID: 1700271.
https://doi.org/10.1002/star.201700271
[55]  Ko, S.Y., Sand, A., Shin, N.J. and Kwark, Y.-J. (2018) Synthesis and Characterization of Superabsorbent Polymer Based on Carboxymethyl Cellulose-Graft-Itaconic Acid. Fibers and Polymers, 19, 255-262.
https://doi.org/10.1007/s12221-018-7837-9
[56]  Huang, Z., Zhou, X., Xing, Z. and Wang, B. (2018) Improving Application Performance of in Situ Polymerization and Crosslinking System of Maleic Acid/Itaconic Acid for Cotton Fabric. Fibers and Polymers, 19, 281-288.
https://doi.org/10.1007/s12221-018-7745-z
[57]  Kasar, S.B. and Thopate, S.R. (2018) Synthesis of Bis(indolyl)methanes Using Naturally Occurring, Biodegradable Itaconic Acid as a Green and Reusable Catalyst. Current Organic Synthesis, 15, 110-115.
https://doi.org/10.2174/1570179414666170621080701
[58]  Yaman, S. and Öztürk, Y. (2017) Analyses of Particle Size and Magnetisation of Magnetic Nanoparticles via Minitab Statistical Software. Micro & Nano Letters, 12, 784-786.
https://doi.org/10.1049/mnl.2017.0101
[59]  Shah, D. and Londhe, V. (2011) Optimization and Characterization of Levamisole-Loaded Chitosan Nanoparticles by Ionic Gelation Method Using 2(3) Factorial Design by Minitab® 15. Therapeutic Delivery, 2, 171-179.
https://doi.org/10.4155/tde.10.102
[60]  Wang, D.X. and Conerly, M.D. (2008) Evaluating the Power of Minitab’s Data Subsetting Lack of Fit Test in Multiple Linear Regression. Journal of Applied Statistics, 35, 115-124.
https://doi.org/10.1080/02664760701775381
[61]  Maurer, H.W. and Kearney, R.L. (1998) Opportunities and Challenges for Starch in the Paper Industry. Starch-Stärke, 50, 396-402.
https://doi.org/10.1002/(SICI)1521-379X(199809)50:9<396::AID-STAR396>3.0.CO;2-8
[62]  Chen, Q., Yu, H., Wang, L., ul Abdin, Z., Chen, Y., Wang, J., Zhou, W., Yang, X., Khan, R.U., Zhang, H. and Chen, X. (2015) Recent Progress in Chemical Modification of Starch and Its Applications. RSC Advances, 5, 67459-67474.
https://doi.org/10.1039/C5RA10849G
[63]  Zhu, F. (2015) Composition, Structure, Physicochemical Properties, and Modifications of Cassava Starch. Carbohydrate Polymers, 122, 456-480.
https://doi.org/10.1016/j.carbpol.2014.10.063
[64]  Kaur, B., Ariffin, F., Bhat, R. and Karim, A.A. (2012) Progress in Starch Modification in the Last Decade. Food Hydrocolloids, 26, 398-404.
https://doi.org/10.1016/j.foodhyd.2011.02.016
[65]  Zia-ud-Din, Xiong, H. and Fei, P. (2017) Physical and Chemical Modification of Starches: A Review. Critical Reviews in Food Science and Nutrition, 57, 2691-2705.
https://doi.org/10.1080/10408398.2015.1087379
[66]  Masina, N., Choonara, Y.E., Kumar, P., du Toit, L.C., Govender, M., Indermun, S. and Pillay, V. (2017) A Review of the Chemical Modification Techniques of Starch. Carbohydrate Polymers, 157, 1226-1236.
https://doi.org/10.1016/j.carbpol.2016.09.094
[67]  Khlestkin, V.K., Peltek, S.E. and Kolchanov, N.A. (2018) Review of Direct Chemical and Biochemical Transformations of Starch. Carbohydrate Polymers, 181, 460-476.
https://doi.org/10.1016/j.carbpol.2017.10.035
[68]  Niranjana Prabhu, T. and Prashantha, K. (2018) A Review on Present Status and Future Challenges of Starch Based Polymer Films and Their Composites in Food Packaging Applications. Polymer Composites, 39, 2499-2522.
https://doi.org/10.1002/pc.24236
[69]  Lele, V.V., Kumari, S. and Niju, H. (2018) Syntheses, Characterization and Applications of Graft Copolymers of Sago Starch—A Review. Starch-Stärke, 70, Article ID: 1700133.
https://doi.org/10.1002/star.201700133
[70]  Holik, H. (2013) Handbook of Paper and Board. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[71]  Chen, G., Zhu, Z.J., Salminen, P. and Toivakka, M. (2014) Structure and Mechanical Properties of Starch/Styrene-Butadiene Latex Composites. Advanced Materials Research, 936, 74-81.
https://doi.org/10.4028/www.scientific.net/AMR.936.74
[72]  Hallajisani, A., Hashemi, S.J. and Murray Douglas, W.J. (2011) Experimental Investigation of Industrial Coating-Drying Process Parameters. Drying Technology, 29, 1484-1491.
https://doi.org/10.1080/07373937.2011.575973
[73]  Du, Y., Zang, Y.-H. and Sun, J. (2014) The Effects of Water Soluble Polymers on Paper Coating Consolidation. Progress in Organic Coatings, 77, 908-912.
https://doi.org/10.1016/j.porgcoat.2014.01.007
[74]  Hashemi Najafi, S.M., Tajvidi, M. and Bousfield, D.W. (2018) Production and Mechanical Characterization of Free-Standing Pigmented Paper Coating Layers with Latex and Starch as Binder. Progress in Organic Coatings, 123, 138-145.
https://doi.org/10.1016/j.porgcoat.2018.07.009
[75]  Zhang, S., Jiang, L., Zhang, M. and Wu, Y. (2010) Characteristics of Aramid Fibre/Fibrids and Their Properties for Sheet Making. Nordic Pulp & Paper Research Journal, 25, 488-494.
https://doi.org/10.3183/npprj-2010-25-04-p488-494
[76]  Oh, K., Sim, K., Bin Jeong, Y., Youn, H.J., Lee, H.L., Lee, Y.M. and Yeu, S.U. (2015) Effect of Coating Binder on Fold Cracking of Coated Paper. Nordic Pulp & Paper Research Journal, 30, 361-368.
https://doi.org/10.3183/npprj-2015-30-02-p361-368
[77]  Haroon, M., Wang, L., Yu, H., Abbasi, N.M., Zain-ul-Abdin, Z.-A., Saleem, M., Khan, R.U., Ullah, R.S., Chen, Q. and Wu, J. (2016) Chemical Modification of Starch and Its Application as an Adsorbent Material. RSC Advances, 6, 78264-78285.
https://doi.org/10.1039/C6RA16795K
[78]  Meimoun, J., Wiatz, V., Saint-Loup, R., Parcq, J., Favrelle, A., Bonnet, F. and Zinck, P. (2018) Modification of Starch by Graft Copolymerization. Starch-Stärke, 70, Article ID: 1600351.
https://doi.org/10.1002/star.201600351
[79]  Mange, S., Dever, C., De Bruyn, H., Gaborieau, M., Castignolles, P. and Gilbert, R.G. (2007) Grafting of Oligosaccharides onto Synthetic Polymer Colloids. Biomacromolecules, 8, 1816-1823.
https://doi.org/10.1021/bm061119o
[80]  Bloembergen, S., Lennan, I., Lee, D. and Leeuwen, J. (2008) Paper Binder Performance with Biobased Nanoparticles. TAPPI J.-Pap. 360°. 3, 3.
[81]  Klass, C. (2007) New Nanoparticle Latex Offers Natural Advantage. Paper360 Magazine, 2, 30-31.
[82]  Van Leeuwen, J. (2006) Paper Coating-SBR Latex Replacement Technology. TAPPI Coat. Graph. Arts Conf.
[83]  Bloembergen, S., Mclennan, I.J., Leeuwen, J. and Lee, D.I. (2010) Ongoing Developments in Biolatex Binders with a Very Low Carbon Footprint for Paper and Board Manufacturing. 64th Appita Annual Conference & Exhibition, Melbourne, 18-21 April 2010, 363-369.
[84]  Muthuraj, R., Misra, M. and Mohanty, A.K. (2018) Biodegradable Compatibilized Polymer Blends for Packaging Applications: A Literature Review. Journal of Applied Polymer Science, 135, 45726.
https://doi.org/10.1002/app.45726
[85]  Teodorescu, M., Bercea, M. and Morariu, S. (2018) Biomaterials of Poly(vinyl alcohol) and Natural Polymers. Polymer Reviews, 58, 247-287.
https://doi.org/10.1080/15583724.2017.1403928
[86]  Zhu, P., Kuang, Y., Chen, G., Liu, Y., Peng, C., Hu, W., Zhou, P. and Fang, Z. (2018) Starch/Polyvinyl Alcohol (PVA)-Coated Painting Paper with Exceptional Organic Solvent Barrier Properties for Art Preservation Purposes. Journal of Materials Science, 53, 5450-5457.
https://doi.org/10.1007/s10853-017-1924-6
[87]  Mokwena, K.K. and Tang, J. (2012) Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Critical Reviews in Food Science and Nutrition, 52, 640-650.
https://doi.org/10.1080/10408398.2010.504903
[88]  Maes, C., Luyten, W., Herremans, G., Peeters, R., Carleer, R. and Buntinx, M. (2018) Recent Updates on the Barrier Properties of Ethylene Vinyl Alcohol Copolymer (EVOH): A Review. Polymer Reviews, 58, 209-246.
https://doi.org/10.1080/15583724.2017.1394323
[89]  Christophliemk, H., Johansson, C., Ullsten, H. and Järnström, L. (2017) Oxygen and Water Vapor Transmission Rates of Starch-Poly(vinyl alcohol) Barrier Coatings for Flexible Packaging Paper. Progress in Organic Coatings, 113, 218-224.
https://doi.org/10.1016/j.porgcoat.2017.04.019
[90]  Zhong, Y., Godwin, P., Jin, Y. and Xiao, H. (2019) Biodegradable Polymers and Green-Based Antimicrobial Packaging Materials: A Mini-Review. Advanced Industrial and Engineering Polymer Research, 3, 27-35.
https://doi.org/10.1016/j.aiepr.2019.11.002
[91]  Harlin, A., Backfolk, K. and Laitinen, R. (2014) Process for the Production of Mcrofbrillated Cellulose in an Extruder and Microfibrillated Cellulose Produced According to the Process, US008747612B2.
[92]  Siqueira, G., Bras, J. and Dufresne, A. (2009) Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and Its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 10, 425-432.
https://doi.org/10.1021/bm801193d
[93]  Syverud, K. and Stenius, P. (2009) Strength and Barrier Properties of MFC Films. Cellulose, 16, 75-85.
https://doi.org/10.1007/s10570-008-9244-2
[94]  Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. and Isogai, A. (2009) Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules, 10, 162-165.
https://doi.org/10.1021/bm801065u
[95]  Lavoine, N., Desloges, I., Dufresne, A. and Bras, J. (2012) Microfibrillated Cellulose—Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydrate Polymers, 90, 735-764.
https://doi.org/10.1016/j.carbpol.2012.05.026
[96]  Afra, E., Yousefi, H., Hadilam, M.M. and Nishino, T. (2013) Comparative Effect of Mechanical Beating and Nanofibrillation of Cellulose on Paper Properties Made from Bagasse and Softwood Pulps. Carbohydrate Polymers, 97, 725-730.
https://doi.org/10.1016/j.carbpol.2013.05.032
[97]  Rezayati Charani, P., Dehghani-Firouzabadi, M., Afra, E., Blademo, Å., Naderi, A. and Lindström, T. (2013) Production of Microfibrillated Cellulose from Unbleached Kraft Pulp of Kenaf and Scotch Pine and Its Effect on the Properties of Hardwood Kraft: Microfibrillated Cellulose Paper. Cellulose, 20, 2559-2567.
https://doi.org/10.1007/s10570-013-9998-z
[98]  Djafari Petroudy, S.R., Syverud, K., Chinga-Carrasco, G., Ghasemain, A. and Resalati, H. (2014) Effects of Bagasse Microfibrillated Cellulose and Cationic Polyacrylamide on Key Properties of Bagasse Paper. Carbohydrate Polymers, 99, 311-318.
https://doi.org/10.1016/j.carbpol.2013.07.073
[99]  Afra, E., Yousefi, H. and Lakani, S.A. (2014) Properties of Chemi-Mechanical Pulp Filled with Nanofibrillated and Microcrystalline Cellulose. Journal of Biobased Materials and Bioenergy, 8, 489-494.
https://doi.org/10.1166/jbmb.2014.1462
[100]  Taipale, T., Österberg, M., Nykänen, A., Ruokolainen, J. and Laine, J. (2010) Effect of Microfibrillated Cellulose and Fines on the Drainage of Kraft Pulp Suspension and Paper Strength. Cellulose, 17, 1005-1020.
https://doi.org/10.1007/s10570-010-9431-9
[101]  Hult, E.-L., Iotti, M. and Lenes, M. (2010) Efficient Approach to High Barrier Packaging Using Microfibrillar Cellulose and Shellac. Cellulose, 17, 575-586.
https://doi.org/10.1007/s10570-010-9408-8
[102]  Mashkour, M., Afra, E., Resalati, H. and Mashkour, M. (2015) Moderate Surface Acetylation of Nanofibrillated Cellulose for the Improvement of Paper Strength and Barrier Properties. RSC Advances, 5, 60179-60187.
https://doi.org/10.1039/C5RA08161K
[103]  Aulin, C., Gällstedt, M. and Lindström, T. (2010) Oxygen and Oil Barrier Properties of Microfibrillated Cellulose Films and Coatings. Cellulose, 17, 559-574.
https://doi.org/10.1007/s10570-009-9393-y
[104]  Ridgway, C.J. and Gane, P.A.C. (2012) Constructing NFC-Pigment Composite Surface Treatment for Enhanced Paper Stiffness and Surface Properties. Cellulose, 19, 547-560.
https://doi.org/10.1007/s10570-011-9634-8
[105]  Hamada, H., Beckvermit, J. and Bousfield, D. (2010) Nanofibrillated Cellulose with Fine Clay as a Coating Agent to Improve Print Quality. Pap. Conf. Trade Show 2010, Pap. 2010. 1, 854-880.
[106]  Dimic-Misic, K., Ridgway, C., Maloney, T., Paltakari, J. and Gane, P. (2014) Influence on Pore Structure of Micro/Nanofibrillar Cellulose in Pigmented Coating Formulations. Transport in Porous Media, 103, 155-179.
https://doi.org/10.1007/s11242-014-0293-8
[107]  Andrade, R., Skurtys, O., Osorio, F., Zuluaga, R., Gañán, P. and Castro, C. (2014) Wettability of Gelatin Coating Formulations Containing Cellulose Nanofibers on Banana and Eggplant Epicarps. LWT—Food Science and Technology, 58, 158-165.
https://doi.org/10.1016/j.lwt.2014.02.034
[108]  Laurichesse, S. and Avérous, L. (2014) Chemical Modification of Lignins: Towards Biobased Polymers. Progress in Polymer Science, 39, 1266-1290.
https://doi.org/10.1016/j.progpolymsci.2013.11.004
[109]  Hambardzumyan, A., Foulon, L., Bercu, N.B., Pernes, M., Maigret, J.E., Molinari, M., Chabbert, B. and Aguié-Béghin, V. (2015) Organosolv Lignin as Natural Grafting Additive to Improve the Water Resistance of Films Using Cellulose Nanocrystals. Chemical Engineering Journal, 264, 780-788.
https://doi.org/10.1016/j.cej.2014.12.004
[110]  Andersson, C. (2008) New Ways to Enhance the Functionality of Paperboard by Surface Treatment—A Review. Packaging Technology and Science, 21, 339-373.
https://doi.org/10.1002/pts.823
[111]  Hult, E.-L., Koivu, K., Asikkala, J., Ropponen, J., Wrigstedt, P., Sipilä, J. and Poppius-Levlin, K. (2013) Esterified Lignin Coating as Water Vapor and Oxygen Barrier for Fiber-Based Packaging. Holzforschung, 67, 899-905.
https://doi.org/10.1515/hf-2012-0214
[112]  Vartiainen, J., Vähä-Nissi, M. and Harlin, A. (2014) Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments. Materials Sciences and Applications, 5, 708-718.
https://doi.org/10.4236/msa.2014.510072
[113]  Araújo, T.S.L., de Oliveira, T.M., de Sousa, N.A., Souza, L.K.M., Sousa, F.B.M., de Oliveira, A.P., Nicolau, L.A.D., da Silva, A.A.V., Araújo, A.R., Magalhães, P.J.C., Vasconcelos, D.F.P., de Jonge, H.R., Souza, M.H.L.P., Silva, D.A., Paula, R.C.M. and Medeiros, J.V.R. (2020) Biopolymer Extracted from Anadenanthera colubrina (Red Angico Gum) Exerts Therapeutic Potential in Mice: Antidiarrheal Activity and Safety Assessment. Pharmaceuticals, 13, 17.
https://doi.org/10.3390/ph13010017
[114]  Han, J.H. and Aristippos, G. (2005) Edible Films and Coatings: A Review. In: Innovations in Food Packaging, Elsevier, Amsterdam, 239-262.
https://doi.org/10.1016/B978-012311632-1/50047-4
[115]  Senturk Parreidt, T., Müller, K. and Schmid, M. (2018) Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods, 7, 170.
https://doi.org/10.3390/foods7100170
[116]  Alexandre, E.M.C., Lourenço, R.V., Bittante, A.M.Q.B., Moraes, I.C.F. and Sobral, P.J.A. (2016) Gelatin-Based Films Reinforced with Montmorillonite and Activated with Nanoemulsion of Ginger Essential Oil for Food Packaging Applications. Food Packaging and Shelf Life, 10, 87-96.
https://doi.org/10.1016/j.fpsl.2016.10.004
[117]  Alparslan, Y., Yapıcı, H.H., Metin, C., Baygar, T., Günlü, A. and Baygar, T. (2016) Quality Assessment of Shrimps Preserved with Orange Leaf Essential Oil Incorporated Gelatin. LWT—Food Science and Technology, 72, 457-466.
https://doi.org/10.1016/j.lwt.2016.04.066
[118]  Park, H.J., Kim, S.H., Lim, S.T., Shin, D.H., Choi, S.Y. and Hwang, K.T. (2000) Grease Resistance and Mechanical Properties of Isolated Soy Protein-Coated Paper. Journal of the American Oil Chemists’ Society, 77, 269-273.
https://doi.org/10.1007/s11746-000-0044-2
[119]  Gorrasi, G. and Bugatti, V. (2016) Edible Bio-Nano-Hybrid Coatings for Food Protection Based on Pectins and LDH-Salicylate: Preparation and Analysis of Physical Properties. LWT—Food Science and Technology, 69, 139-145.
https://doi.org/10.1016/j.lwt.2016.01.038
[120]  Falguera, V., Quintero, J.P., Jiménez, A., Muñoz, J.A. and Ibarz, A. (2011) Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends in Food Science & Technology, 22, 292-303.
https://doi.org/10.1016/j.tifs.2011.02.004
[121]  Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H., Han, W., et al. (2019) Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers, 11, 2039.
https://doi.org/10.3390/polym11122039
[122]  Hassan, B., Chatha, S.A.S., Hussain, A.I., Zia, K.M. and Akhtar, N. (2018) Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. International Journal of Biological Macromolecules, 109, 1095-1107.
https://doi.org/10.1016/j.ijbiomac.2017.11.097
[123]  Hopewell, J., Dvorak, R. and Kosior, E. (2009) Plastics Recycling: Challenges and Opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2115-2126.
https://doi.org/10.1098/rstb.2008.0311
[124]  álvarez-Castillo, E., Felix, M., Bengoechea, C. and Guerrero, A. (2021) Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods, 10, 981.
https://doi.org/10.3390/foods10050981
[125]  Cazón, P., Velazquez, G., Ramírez, J.A. and Vázquez, M. (2017) Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocolloids, 68, 136-148.
https://doi.org/10.1016/j.foodhyd.2016.09.009
[126]  Wittaya, T. (2012) Protein-Based Edible Films: Characteristics and Improvement of Properties. In: Structure and Function of Food Engineering, InTech, London, 43-70.
https://doi.org/10.5772/48167
[127]  Park, S.K., Rhee, C.O., Bae, D.H. and Hettiarachchy, N.S. (2001) Mechanical Properties and Water-Vapor Permeability of Soy-Protein Films Affected by Calcium Salts and Glucono-δ-Lactone. Journal of Agricultural and Food Chemistry, 49, 2308-2312.
https://doi.org/10.1021/jf0007479
[128]  Cho, D.-Y., Jo, K., Cho, S.Y., Kim, J.M., Lim, K., Suh, H.J. and Oh, S. (2014) Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein. Korean Journal for Food Science of Animal Resources, 34, 362-371.
https://doi.org/10.5851/kosfa.2014.34.3.362
[129]  Richert, M., Nejman, I. and Zawadzka, P. (2019) Characterization of Microstructure Coatings Used in Industry. Journal of Surface Engineered Materials and Advanced Technology, 9, 11-27.
https://doi.org/10.4236/jsemat.2019.92002
[130]  Park, H.J. (1999) Development of Advanced Edible Coatings for Fruits. Trends in Food Science & Technology, 10, 254-260.
https://doi.org/10.1016/S0924-2244(00)00003-0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413