全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

温度对泡沫铝夹芯壳力学性能影响的数值研究
Numerical Study on the Effect of Temperature on the Mechanical Properties of Aluminum Foam Sandwich Shells

DOI: 10.12677/IJM.2022.111003, PP. 17-28

Keywords: 温度,泡沫铝夹芯壳,力学性能,数值模拟,能量吸收,变形,破坏形式
Temperature
, Aluminum Foam Sandwich Shell, Mechanical Properties, Numerical Simulation, En-ergy Absorption, Deformation, Failure Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文用数值模拟方法,研究了温度对泡沫铝夹芯壳力学性能的影响。首先建立了泡沫铝夹芯壳有限元模型并施加冲击载荷,将模拟结果与实验结果进行了比较,验证了有限元模型的准确性。其次研究了温度对泡沫铝夹芯壳吸能以及变形的影响,结果表明在?50℃到300℃的温度下,随着温度的升高,夹芯壳的吸能变化不明显,但是背面板中心点的变形与结构整体变形都在增加,整个结构抗冲击能力在下降。最后分析了泡沫铝夹芯壳的破坏模式,结果表明在弹丸撞击下,夹芯壳在?50℃,25℃和300℃下都主要发生剪切破坏。夹芯壳的上、下面板都以剪切破坏为主,泡沫铝芯层在发生剪切破坏的同时还存在压实坍塌破坏。
In this paper, numerical simulation methods are used to study the influence of temperature on the mechanical properties of aluminum foam sandwich shells. First, a finite element model of the alu-minum foam sandwich shells has established, and an impact load was applied. The simulation re-sults were compared with the experimental results to verify the accuracy of the finite element model. Secondly, the influence of temperature on the energy absorption and deformation of the aluminum foam sandwich shells is studied. The results show that at temperatures ranging from ?50?C to 300?C, the energy absorption of the sandwich shells does not change significantly as the temperature increases. However, the deformation of the center point of the back panel and the structure’s overall deformation will increase with the increase of temperature, and the impact re-sistance of the entire structure will decrease. Finally, the failure mode of the aluminum foam sand-wich shells is analyzed. The results show that under the projectile’s impact, the sandwich shell mainly undergoes shear failure at ?50?C, 25?C, and 300?C. The upper and lower panels of the sand-wich shell are mainly the shear failure, and the aluminum foam core layer is the failure by compac-tion and collapse at the same time as the shearing failure occurs.

References

[1]  Damghani, M.N. and Gonabadi, A.M. (2019) Numerical Study of Energy Absorption in Aluminum Foam Sandwich Panel Structures Using Drop Hammer Test. Journal of Sandwich Structures and Materials, 21, 3-18.
https://doi.org/10.1177/1099636216685315
[2]  夏志成, 张建亮, 周竞洋, 王曦浩. 泡沫铝夹芯板抗冲击性能分析[J]. 工程力学, 2017, 34(10): 207-216.
https://doi.org/10.6052/j.issn.1000-4750.2016.06.0494
[3]  Zhao, H., Elnasri, I. and Girard, Y. (2007) Perforation of Aluminium Foam Core Sandwich Panels under Impact Loading—An Experimental Study. International Journal of Impact Engineering, 34, 1246-1257.
https://doi.org/10.1016/j.ijimpeng.2006.06.011
[4]  Elnasri, I. and Zhao, H. (2016) Impact Perforation of Sand-wich Panels with Aluminum Foam Core: A Numerical and Analytical Study. International Journal of Impact Engineer-ing, 96, 50-60.
https://doi.org/10.1016/j.ijimpeng.2016.05.013
[5]  Jing, L., Xi, C.Q., Wang, Z.H. and Zhao, L. (2013) Energy Absorption and Failure Mechanism of Metallic Cylindrical Sandwich Shells under Impact Loading. Materials and De-sign, 52, 470-480.
https://doi.org/10.1016/j.matdes.2013.05.090
[6]  Jing, L., Wang, Z.H. and Zhao, L.M. (2013) Dynamic Response of Cylindrical Sandwich Shells with Metallic Foam Cores under Blast Loading—Numerical Simulations. Composite Structures, 99, 213-223.
https://doi.org/10.1016/j.compstruct.2012.12.013
[7]  Liu, X.R., Tian, X.G., Lu, T.J., Zhou, D. and Liang, B. (2012) Blast Resistance of Sandwich-Walled Hollow Cylinders with Graded Metallic Foam Cores. Composite Structures, 94, 2485-2493.
https://doi.org/10.1016/j.compstruct.2012.02.029
[8]  王涛, 余文力, 秦庆华, 王金涛, 王铁军. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究[J]. 兵工学报, 2016, 37(8): 1456-1463.
[9]  张元豪, 程忠庆, 方志威, 侯海量, 朱锡. 泡沫铝夹芯结构对中低速FSP的抗侵彻特性研究[J]. 振动与冲击, 2019, 38(22): 231-235.
https://doi.org/10.13465/j.cnki.jvs.2019.22.033
[10]  倪晶博. 温度对泡沫铝强度的影响[J]. 工程与试验, 2010, 50(4):19-21+68.
https://doi.org/10.3969/j.issn.1674-3407.2010.04.007
[11]  王鹏飞, 徐松林, 胡时胜. 不同温度下泡沫铝压缩行为与变形机制探讨[J]. 振动与冲击, 2013, 32(5): 16-19.
https://doi.org/10.13465/j.cnki.jvs.2013.05.009
[12]  Hakamada, M., Nomura, T., Yamada, Y., Chino, Y., Chen, Y., Kusuda, H., et al. (2005) Compressive Deformation Behavior at Elevated Temperatures in a Closed-Cell Aluminum Foam. Materials Transactions, 46, 1677-1680.
https://doi.org/10.2320/matertrans.46.1677
[13]  Aly, M.S. (2007) Behavior of Closed Cell Aluminium Foams up-on Compressive Testing at Elevated Temperatures: Experimental Results. Materials Letters, 61, 3138-3141.
https://doi.org/10.1016/j.matlet.2006.11.046
[14]  Cady, C.M., Gray, G.T., Liu, C., Lovato, M.L. and Mukai, T. (2009) Compressive Properties of a Closed-Cell Aluminum Foam as a Function of Strain Rate and Temperature. Materi-als Science and Engineering A, 525, 1-6.
https://doi.org/10.1016/j.msea.2009.07.007
[15]  习会峰, 刘逸平, 汤立群, 刘泽佳, 穆建春, 杨宝. 考虑温度效应的泡沫铝静态压缩本构模型[J]. 哈尔滨工程大学学报, 2013, 34(8): 1000-1005.
https://doi.org/10.3969/j.issn.1006-7043.201211022
[16]  Liu, Q. and Subshsh, G. (2004) A Phenomenological Constitutive Model for Foams under Large Deformations. Polymer Engineering and Science, 44, 463-473.
https://doi.org/10.1002/pen.20041

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133