全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simulation of a CIGS Solar Cell with CIGSe2/MoSe2/Mo Rear Contact Using AFORS-HET Digital Simulation Software

DOI: 10.4236/mnsms.2022.122002, PP. 13-23

Keywords: CIGS, Molybdenum Diselenide (MoSe2), AFORS-HET, Simulation, Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, the AFORS-HET digital simulation software was used to calculate the electrical characteristics of the cell/n-ZnO/i-ZnO/n-Zn (O, S)/p-CIGSe2/p + -MoSe2/Mo/SLG. When the thickness of the CIGSe2 absorber is between 3.5 and 1.5 μm, the efficiency of the cell with an interfacial layer of MoSe2 remains almost constant, with an efficiency of about 24.6%, higher to that of a conventional cell which is 23.4% for a thickness of 1.5 μm of CIGSe2. To achieve the expected results, the MoSe2 layer must be very thin less than or equal to 30 nm. In addition, a Schottky barrier height greater than 0.45 eV severely affects the fill factor and the open circuit voltage of the solar cell with MoSe2 interface layer.

References

[1]  Sylla, A. (2018) Modélisation et simulation d’une cellule solaire en couches minces à base de CuIn1-xGaxSe2 utilisant un tampon Zn(O, S). Université Félix Houphouet Boigny.
[2]  Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2016) Solar Cell Efficiency Tables (Version 48). Progress Photovoltaics Journal, 24, 905-913.
https://doi.org/10.1002/pip.2788
[3]  Friedlmeier, T.M., et al. (2015) Improved Photocurrent in Cu(In,Ga)Se2 Solar Cells: From 20.8% to 21.7% Efficiency. IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, 14-19 June 2015, 1-3.
https://doi.org/10.1109/PVSC.2015.7356152
[4]  Solibro Press Release. (2014) Solibro Beats World Record for Solar Cells. Dated 12 June.
[5]  Solar Frontier Press Release. (2015) Solar Frontier Achieves World Record Thin- Film Solar Cell Efficiency: 22.3%. 8 December.
https://doi.org/10.1016/j.jpcs.2005.09.087
[6]  Gloeckler, M. and Sites, J.R. (2005) Band-Gap Grading in Cu(In,Ga)Se Solar Cells. Journal of Physics and Chemistry of Solids, 66, 1891-1894.
https://doi.org/10.1016/j.solener.2011.08.003
[7]  Saji, V.S., Choi, I.-H. and Lee, C.-W. (2011) Progress in Electrodeposited Absorber Layer for CuIn(1-x)GaxSe1 (CIGS) Solar Cells. Solar Energy, 85, 2666-2678.
https://doi.org/10.1016/j.egypro.2010.07.009
[8]  Decocka, K., Lauwaerta, J. and Burgelmana, M. (2010) Characterization of Graded CIGS Solar Cells. Energy Procedia, 2, 49-54.
[9]  Varache, R. (2012) Développement, caractérisation et modélisation d’interfaces pour cellules solaires à haut rendement à base d’hétérojonctions de silicium. Thèse de Doctorat, Universite Paris-Sud.
[10]  Paulson, P.D., Birkmire, R.W. and Shafarman, W.N. (2003) Optical Characterization of CuIn(1-x)GaxSe Alloy Thin Films by Spectroscopic Ellipsometry. Journal of Applied Physics, 94, 879-888.
[11]  Raquel, C., et al. (2010) Cu Deficiency in Multi-Stage Co-Evaporated Cu(In,Ga)Se2 for Solar Cells Applications: Microstructure and Ga In-Depth Alloying. Acta Materialia, 58, 3468-3476.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413