全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comments on Warm Dark Matter Measurements and Limits

DOI: 10.4236/ijaa.2022.121006, PP. 94-109

Keywords: Warm Dark Matter, Spiral Galaxy Rotation Curves, Stellar Mass Distributions, Lyman-α Forest

Full-Text   Cite this paper   Add to My Lib

Abstract:

Observed spiral galaxy rotation curves allow a measurement of the warm dark matter particle velocity dispersion and mass. The measured thermal relic mass mh 100 eV is in disagreement with limits, typically in the range 1 to 4 keV. We review the measurements, update the no freeze-in and no freeze-out scenario of warm dark matter, and try to identify the cause of the discrepancies between measurements and limits.

References

[1]  Zyla, P.A., et al. (2020) The Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, 083C01.
[2]  Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
[3]  Boyanovsky, D., de Vega, H.J. and Sanchez, N.G. (2008) The Dark Matter Transfer Function: Free Streaming, Particle Statistics and Memory of Gravitational Clustering. Physical Review D, 78, Article ID: 063546.
https://doi.org/10.1103/PhysRevD.78.063546
[4]  Viel, M., Lesgourgues, J., Haehnelt, M.G., Matarrese, S. and Riotto, A. (2005) Constraining Warm Dark Matter Candidates Including Sterile Neutrinos and Light Gravitinos with WMAP and the Lyman-α Forest. Physical Review D, 71, Article ID: 063534.
https://doi.org/10.1103/PhysRevD.71.063534
[5]  White, M. and Croft, A.A.C. (2018) Suppressing Linear Power on Dwarf Galaxy Halo Scales. The Astrophysical Journal, 539, 497-504.
https://doi.org/10.1086/309273
[6]  Hoeneisen, B. (2019) Simulations and Measurements of Warm Dark Matter Free-Streaming and Mass. International Journal of Astronomy and Astrophysics, 9, 368-392.
https://doi.org/10.4236/ijaa.2019.94026
[7]  Smith, R.E. and Markovič, K. (2011) Testing the Warm Dark Matter Paradigm with Large-Scale Structures. Physical Review D, 84, Article ID: 063507.
https://doi.org/10.1103/PhysRevD.84.063507
[8]  Hoeneisen, B. (2021) A Study of Three Galaxy Types, Galaxy Formation, and Warm Dark Matter. International Journal of Astronomy and Astrophysics, 11, 489-508.
https://doi.org/10.4236/ijaa.2021.114026
[9]  Hoeneisen, B. (2019) A Study of Dark Matter with Spiral Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 9, 71-96.
https://doi.org/10.4236/ijaa.2019.92007
[10]  de Blok, W.J.G., et al. (2008) High-Resolution Rotation Curves and Galaxy Mass Models from THINGS. The Astronomical Journal, 136, 2648.
https://doi.org/10.1088/0004-6256/136/6/2648
[11]  Lelli, F., McGaugh, S.S. and Schombert, J.M. (2016) SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. The Astronomical Journal, 152, 157.
https://doi.org/10.3847/0004-6256/152/6/157
[12]  Hoeneisen, B. (2019) The Adiabatic Invariant of Dark Matter in Spiral Galaxies. International Journal of Astronomy and Astrophysics, 9, 355-367.
[13]  Hoeneisen, B. (2020) Fermion or Boson Dark Matter? International Journal of Astronomy and Astrophysics, 10, 203-223.
https://doi.org/10.4236/ijaa.2020.103011
[14]  Paduroiu, S., Revaz, Y. and Pfenniger, D. (2015) Structure Formation in Warm Dark Matter Cosmologies Top-Bottom Upside-Down.
https://arxiv.org/pdf/1506.03789.pdf
[15]  Hoeneisen, B. (2021) Adding Dark Matter to the Standard Model. International Journal of Astronomy and Astrophysics, 11, 59-72.
https://doi.org/10.4236/ijaa.2021.111004
[16]  Hoeneisen, B. (2000) A Simple Model of the Hierarchical Formation of Galaxies. arXiv: astro-ph/0009071.
[17]  Hoeneisen, B. (2018) Study of Galaxy Distributions with SDSS DR14 Data and Measurement of Neutrino Masses. International Journal of Astronomy and Astrophysics, 8, 230-257.
https://doi.org/10.4236/ijaa.2018.83017
[18]  Press, W.H. and Schechter, P. (1974) Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. The Astrophysical Journal, 187, 425-438.
https://doi.org/10.1086/152650
[19]  Sheth, R.K. and Tormen, G. (1999) Large-Scale Bias and the Peak Background Split. Monthly Notices of the Royal Astronomical Society, 308, 119-126.
https://doi.org/10.1046/j.1365-8711.1999.02692.x
[20]  Sheth, R.K., Mo, H.J. and Tormen, G. (2001) Ellipsoidal Collapse and an Improved Model for the Number and Spatial Distribution of Dark Matter Haloes. Monthly Notices of the Royal Astronomical Society, 323, 1-12.
https://doi.org/10.1046/j.1365-8711.2001.04006.x
[21]  Schneider, A., Smith, R.E. and Reed, D. (2013) Halo Mass Function and the Free Streaming Scale. MNRAS, 433, 1573-1587.
https://doi.org/10.1093/mnras/stt829
[22]  Schneider, A. (2015) Structure Formation with Suppressed Small-Scale Perturbations. MNRAS, 451, 3117-3130.
https://doi.org/10.1093/mnras/stv1169
[23]  Hoeneisen, B. (2020) Cold or Warm Dark Matter? A Study of Galaxy Stellar Mass Distributions. International Journal of Astronomy and Astrophysics, 10, 57-70.
https://doi.org/10.4236/ijaa.2020.102005
[24]  Angulo, R.E., Hahn, O. and Abel, T. (2013) The Warm Dark Matter Halo Mass Function below the Cut-Off Scale. MNRAS, 434, 3337.
https://doi.org/10.1093/mnras/stt1246
[25]  Markovič and Viel, M. (2013) Lyman-α Forest and Cosmic Weak Lensing in a Warm Dark Matter Universe. Cambridge University Press, Cambridge.
https://doi.org/10.1017/pasa.2013.43
[26]  Binney, J. and Tremaine, S. (2008) Galactic Dynamics. 2nd Edition, Princeton University Press, Princeton.
https://doi.org/10.1515/9781400828722
[27]  Lapi, A. and Danese, L. (2015) Cold or Warm? Constraining Dark Matter with Primeval Galaxies and Cosmic Reionization after Planck. Journal of Cosmology and Astroparticle Physics, 9, 3.
https://doi.org/10.1088/1475-7516/2015/09/003
[28]  Chardin, J., Puchwein, E. and Haehnelt, M.G. (2017) Large Scale Opacity Fluctuations in the Lyα Forest: Evidence for QSOs Dominating the Ionizing UV Background at z ≈ 5.56? MNRAS, 465, 3429.
https://doi.org/10.1093/mnras/stw2943
[29]  Meiksin, A.A. (2009) The Physics of the Intergalactic Medium. Reviews of Modern Physics, 81, 1405-1469.
https://doi.org/10.1103/RevModPhys.81.1405
[30]  Baur, J., Palanque-Delabrouille, N., Yèche, N., Magneville, C. and Viel, M. (2016) Lyman-alpha Forests Cool Warm Dark Matter. Journal of Cosmology and Astroparticle Physics, 8, 12.
https://doi.org/10.1088/1475-7516/2016/08/012

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413