全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Insight into Magnetic Monopoles in Astrophysical Application

DOI: 10.4236/ijaa.2022.121007, PP. 110-131

Keywords: Supernovae, Cosmology, Cosmic Microwave Background

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we mainly review our previous works on a magnetic-monopole toy model, in which the energy resources come from nucleon decay catalyzed by magnetic monopoles. Utilizing this unified model, we have explained various supernova explosion and gamma ray bursts, extra heat at the centers of white dwarfs and the earth. The unusually strong radial magnetic field near the Galactic Center (GC) is quantitatively consistent with our theoretical prediction in 2001. It may be strong astronomical observational evidence of the presence of magnetic monopoles predicted by particle physics. Using the masses of 100,000 quasars observed by SLOAN with various red-shifts due to the black hole, according to the popular black hole accretion model, we estimate the initial mass of quasars when they born in early universe. It is found that most low-red-shifting quasars have an initial mass of negative or very small values. However, based on our proposed model of super massive stars with magnetic monopoles, the statistical distribution of the initial mass for these quasars should be a reasonable Gaussian distribution. This suggests that the modern model of black holes in the quasars and active galactic nucleus may be unreasonable.

References

[1]  Chakraborty, J., Lazarides, G., Maji, R. and Shafi, Q. (2021) Primordial Monopoles and Strings, Inflation and Gravity Waves. Journal of High Energy Physics, 2, Article No. 114. arXiv: 2011.01838.
https://doi.org/10.1007/JHEP02(2021)114
[2]  Bazeia, D., Marques, M.A., Menezes, R. (2018) Magnetic Monopoles with Internal Structure. Physical Review D, 97, Article ID: 105024, arXiv: 1805.03250.
https://doi.org/10.1134/S1063776118100011
[3]  Burdyuzha, V.V. (2018) Magnetic Monopoles and Dark Matter. Journal of Experimental and Theoretical Physics, 127, 638-646, arXiv: 1901.02341.
[4]  Acharya, B., Alexandre, J., Bendtz, K., Benes, P., Bernabéu, J., Campbell, M., et al. (2016) Search for Magnetic Monopoles with the MoEDAL Prototype Trapping Detector in 8 TeV Proton-Protoncollisions at the LHC. Journal of High Energy Physics, 2016, Article No. 67, arXiv:1604.06645.
https://doi.org/10.1007/JHEP08(2016)067
[5]  Samuel K. and Peter P. (2017) Magnetic Monopoles in Noncommutative Quantum Mechanics. Journal of Mathematical Physics, 58, Article ID: 012101.
https://doi.org/10.1063/1.4973503
[6]  Carter, B. (1968) Global Structure of the Kerr Family of Gravitational Fields. Physical Review, 174, 1559-1571.
https://doi.org/10.1103/PhysRev.174.1559
https://link.aps.org/doi/10.1103/PhysRev.174.1559
[7]  Eloy, A.-B. and Alberto, G. (2000) The Bardeen model as a nonlinear magnetic monopole. Physics Letters B, 493, 149-152.
https://doi.org/10.1016/S0370-2693(00)01125-4
[8]  Rubakov, V. (1981) Superheavy Magnetic Monopoles and Decay of the Proton. Soviet Journal of Experimental and Theoretical Physics Letters, 33, 644-616.
http://www.jetpletters.ac.ru/ps/1512/article_23107.pdf
[9]  Rubakov, V. and Serebryakov, M.S. (1983) Anomalous Baryon Number Non-Conservation in the Presence of SU(5) Monopoles. Nuclear Physics B, 218, 240-268.
https://doi.org/10.1016/0550-3213(83)90484-4
https://www.sciencedirect.com/science/article/abs/pii/0550321383904844?via%3Dihub
[10]  Callan Jr., C.G. (1983) Monopole Catalysis of Baryon Decay. Nuclear Physics B, 212, 365-400.
https://doi.org/10.1016/0550-3213(83)90677-6
https://ui.adsabs.harvard.edu/abs/1983NuPhB.212..365C/abstract
[11]  Peng, Q.H., Li, Z.Y. and Wang, D.Y. (1985) Content of Magnetic Monopoles in Quasars, Galactic Nuclei and Stars and Their Astrophysical Effects. Scientia Sinica, 28, 970-977.
https://ui.adsabs.harvard.edu/abs/1985SSSMP..28..970P/abstract
[12]  Peng, Q.H., Wang, D.Y. and Li, Z.Y. (1985) A Monopole Model for Galactic Nuclei. Science Bulletin, 30, 1056-1061.
https://ui.adsabs.harvard.edu/abs/ 1985 KexT...30.1056P/abstract
[13]  Peng, Q.H. and Wang, Y.J. (1985) A Kind of Supermassive Dense Celestial Body (Not Black Hole). Science Bulletin, 30, 1586.
https://ui.adsabs.harvard.edu/abs/1985 KexT..30.1586P/abstract
[14]  Peng, Q.H., Liu, J.J. and Chou, C.K. (2020) A Magnetic-Monopole-Based Mechanism to the Formation of the Hot Big Bang Modeled Universe. Modern Physics Letters A, 35, Article ID: 2050030.
https://ui.adsabs.harvard.edu/abs/2020MPLA...3550030P/abstract
https://doi.org/10.1142/S0217732320500303
[15]  Peng, Q.H. (1985) Forces Exerting on a Test Particle Outside a Relativistic Rotating Massive Object with Saturation of Magnetic Monopoles and Jets from the Object. Proceedings of ESA Workshop on a Cosmic X-Ray Spectroscopy Mission, Vol. 239, 129-130.
https://ui.adsabs.harvard.edu/abs/1985ESASP.239..129P/abstract
[16]  Peng, Q.H., Wang, D.Y. and Li, Z.Y. (1986) A Non-Black Hole Model of Galactic Nuclei with Monopoles. Acta Astrophysica Sinica, 6, 249-257.
https://ui.adsabs.harvard.edu/abs/1986AcApS...6..249P/abstract
[17]  Wang, D.Y. and Peng, Q.H. (1986) A Monople Model for Annihilation Line Emission from the Galactic Center. Advances in Space Research, 6, 177-179.
https://doi.org/10.1016/0273-1177(86)90259-0
https://ui.adsabs.harvard.edu/abs/1986AdSpR...6d.177W/abstract
[18]  Peng, Q.H. (1989) The Critical and the Saturation Content of Magnetic Monopoles in Rotating Relativistic Objects. Astrophysics and Space Science, 154, 271-279.
https://doi.org/10.1007/BF00642810
https://articles.adsabs.harvard.edu/pdf/1989Ap%26SS.154..271P
[19]  Peng, Q.H. and Chou, C.K. (1998) A Model of Quasars and AGNs with Magnetic Monopoles. ASP Conference Series, 151, 119.
https://ui.adsabs.harvard.edu/abs/1998ASPC..151..119P/abstract
[20]  Peng, Q.H. (2000) High-energy Radiation from a Model of Quasars, AGNs, and the Galactic Center with Magnetic Monopoles. Proceedings of International Astronomical Union Symposium, 195, Bozeman, 6-10 July 1999, 421-422.
https://doi.org/10.1017/S0074180900163375
https://ui.adsabs.harvard.edu/abs/2000IAUS..195..421P/abstract
[21]  Peng, Q.H., Chou, C.K. (2001) High-Energy Radiation from a Model of Quasars, Active Galactic Nuclei, and the Galactic Center with Magnetic Monopoles. The Astrophysical Journal, 551, L23-L26.
https://doi.org/10.1086/319824
https://ui.adsabs.harvard.edu/abs/2001ApJ...551L..23P/abstract
[22]  Peng, Q.H. and Chou, C.K. (2001) Ultra High Energy Cosmic Rays from Supermassive Objects with Magnetic Monopoles. The 7th Taipei Astrophysics Workshop on Cosmic Rays in the Universe, ASP Conference Series, 241, 133.
https://ui.adsabs.harvard.edu/abs/2001ASPC..241..133P/abstract
[23]  Polyakov, A.M. (1974) Particle Spectrum in the Quantum Field Theory. ZhETF Pisma Redaktsiiu, 20, 430-433.
http://www.jetpletters.ac.ru/ps/1789/article_27297.pdf
[24]  Lee, K., Nair, V.P. and Weinberg, E.J. (1992) A Classical Instability of Reissner-Nordstrom Solutions and the Fate of Magnetically Charged Black Holes. Physical Review Letters, 68, 1100-1103.
https://doi.org/10.1103/physrevlett.68.1100
https://ui.adsabs.harvard.edu/abs/1992PhRvL..68.1100L/abstract
[25]  Cabrera, B. (1982) First Results from a Superconductive Detector for Moving Magnetic Monopoles. Physical Review Letters, 48, 1378-1381.
https://doi.org/10.1103/PhysRevLett.48.1378
https://ui.adsabs.harvard.edu/abs/1982PhRvL..48.1378C/abstract
[26]  Aartsen, M.G., Abraham, K., Ackermann, M., Adams, J., Aguilar, J.A., Ahlers, M., et al. (2016) Searches for Relativistic Magnetic Monopoles in IceCube. European Physical Journal C, 76, Article No. 133, arXiv: 1511.01350.
https://doi.org/10.1140/epjc/s10052-016-3953-8
https://ui.adsabs.harvard.edu/abs/2016EPJC...76..133A/abstract
[27]  IceCube Collaboration (2021) Search for Relativistic Magnetic Monopoles with Eight Years of Ice Cube Data. Physical Review Letters, 128, 051101. arXiv: 2109.13719.
https://doi.org/10.1103/PhysRevLett.128.051101
https://arxiv.org/abs/2109.13719
[28]  Bai, Y., Lu, S. and Orlofsky, N. (2021) Searching for Magnetic Monopoles with the Earth’s Magnetic Field. Physical Review Letters, 127, Article ID: 101801.
https://doi.org/10.1103/PhysRevLett.127.101801
[29]  Zyla, P.A., Barnett, R.M., Beringer, J., Beringer, J., Dahl, O., Dwyer, D.A., et al. (2020) Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020, Article ID: 083C01.
https://doi.org/10.1093/ptep/ptaa104
[30]  Eatough, R.P., Falcke, H., Karuppusamy, R., Lee, K.J., Champion, D.J., et al. (2013) A Strong Magnetic Field Around the Supermassive Black Hole at the Centre of the Galaxy. Nature, 501, 391-394.
https://doi.org/10.1038/nature12499
https://www.nature.com/articles/nature12499
[31]  Peng, Q.H. (2016) The Evidence of Invalidation of the BH model at the GC and the Existence of Magnetic Monopoles. EPJ Web of Conferences, 109, Article ID: 10903001.
https://doi.org/10.1051/epjconf/201610903001
https://ui.adsabs.harvard.edu/abs/2016EPJWC.10903001P/abstract
[32]  Peng, Q.H., Liu, J.J. and Chou, C.K. (2017) A Unified Model of Supernova Driven by Magnetic Monopoles. Astrophysics and Space Science, 362, Article No. 222.
https://doi.org/10.1007/s10509-017-3201-1
https://ui.adsabs.harvard.edu/abs/2017Ap%26SS.362..222P/abstract
[33]  Peng, Q.H. and Li, Z. (2019) Implications for Discovery of Strong Radial Magnetic Field at the Galactic Center? Challenge to Black Hole Models. Journal of Modern Physics, 10, 1416-1423.
https://doi.org/10.4236/jmp.2019.1012094
https://ui.adsabs.harvard.edu/abs/2019JMPh...10.1416P/abstract
[34]  Zamaninasab, M., Clausen-Brown, E., Savolainen, T. and Tchekhovskoy, A. (2014) Dynamically Important Magnetic Fields Near Accreting Supermassive Black Holes. Nature, 510, 126-128.
https://doi.org/10.1038/nature13399
https://ui.adsabs.harvard.edu/abs/2014Natur.510..126Z/abstract
[35]  Kn¨odlseder, J., Lonjou, V., Jean, P., Allain, M., Mandrou, P., Roques, J.-P., et al. (2003) Early SPI/INTEGRAL Constraints on the Morphology of the 511 keV Line Emission in the 4th Galactic Quadrant. Astronomy & Astrophysics, 411, Article No. L457.
https://doi.org/10.1051/0004-6361:20031437
[36]  Falcke, H. and Marko, S.B. (2013) Toward the Event Horizon-the Supermassive Black hole In the Galactic Center. Classical and Quantum Gravity, 30, Article ID: 244003.
https://doi.org/10.1088/0264-9381/30/24/244003
https://ui.adsabs.harvard.edu/abs/2013CQGra..30x4003F/abstract
[37]  Wu, X.F., Wang, F.G., Fan, X., Yi, W., Zuo, W., Bian, F., et al. (2015) An Ultraluminous Quasar with a Twelve-Billion-Solar-Mass Black Hole at Redshift 6.30. Nature, 518, 512.
https://doi.org/10.1038/nature14241
https://ui.adsabs.harvard.edu/abs/2015Natur.518..512W/abstract
[38]  Shen, Y., Gordon, T.R., Strauss, M.A., Hall, P.B., Schneider, D.P., Snedden, S., et al. (2011) A Catalog of Quasar Properties from SDSS DR7. The Astrophysical Journal Supplement Series, 194, Article No. 45.
https://doi.org/10.1088/0067-0049/194/2/45 https://ui.adsabs.harvard.edu/abs/2011ApJS..194...45S/abstract
[39]  Sell, P.H., Tremonti, C.A., Hickox, R.C., Diamond-Stanic, A.M., Moustakas, J., Coil, A., et al. (2014) Massive Compact Galaxies with High-Velocity Outflows: Morphological Analysis and Constraints on AGN Activity. Monthly Notices of the Royal Astronomical Society, 441, 3417-3443.
https://doi.org/10.1093/mnras/stu636
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.3417S/abstract
[40]  Bu, D.F., Yuan, F., Gan, Z.M. and Yang, X.-H. (2016) Hydrodynamical Numerical Simulation of Wind Production from Black Hole Hot Accretion Flows at Very Large Radii. Astrophysical Journal, 818, Article No. 83.
https://doi.org/10.3847/0004-637X/818/1/83 https://ui.adsabs.harvard.edu/abs/2016ApJ...818...83B/abstract
[41]  Jiang, L.H., Fan, X.H., Hines, D.C., Shi, Y., Vestergaard, M., Bertoldi, F., et al. (2006) Probing the Evolution of Infrared Properties of z 6 Quasars: Spitzer Observations. The Astronomical Journal, 132, 2127-2164.
https://doi.org/10.1086/508209
https://ui.adsabs.harvard.edu/abs/2006AJ....132.2127J/abstract
[42]  Jiang, L.H., Fan, X.H., Brandt, W.N., Carilli, C.L., Egami, E., et al. (2010) Dust-Free Quasars in the Early Universe. Nature, 464, 380-383.
https://doi.org/10.1038/nature08877 https://ui.adsabs.harvard.edu/abs/2010Natur.464..380J/abstract
[43]  Wilson, J.R., Mayle, R. and Weaver, T.A. (1985) Stellar Core Collapse and Supernova. Presented at the 12th Texas Symposium of Relativistic Astrophysics, Jerusalem, 17-21December1984, Article No. 8616172W.
https://ui.adsabs.harvard.edu/abs/1985STIN...8616172W/abstract
[44]  Bethe, H.A. and Wilson, J.R. (1985) Revival of a Stalled Supernova Shock by Neutrino Heating. Astrophysical Journal, 295, 14-23.
https://doi.org/10.1086/163343
https://ui.adsabs.harvard.edu/abs/1985ApJ...295...14B/abstract
[45]  Dai, Z.G., Peng, Q.H. and Lu, T. (1995) The Conversion of Two-Flavor to Three-Flavor Quark Matter in a Supernova Core. Astrophysical Journal, 440, 815.
https://doi.org/10.1086/175316
https://ui.adsabs.harvard.edu/abs/1995ApJ...440..815D/abstract
[46]  Alpher, R.A. and Herman, R. (1948) Evolution of the Universe. Nature, 162, 774-775. https://doi.org/10.1038/162774b0
https://ui.adsabs.harvard.edu/abs/1948Natur.162..774A/abstract
[47]  Guth, A.H. (1982) Phase Transitions in the Embryo Universe. Philosophical Transactions of the Royal Society of London. Series A, 307. 141-147.
https://doi.org/10.1098/rsta.1982.0107
https://ui.adsabs.harvard.edu/abs/1982RSPTA.307..141G/abstract
[48]  Guth, A.H. (1982) Phase Transitions in the Embryo Universe: Discussion. Philosophical Transactions of the Royal Society of London. Series A, 307, 148.
https://doi.org/10.1098/rsta.1982.0107 https://ui.adsabs.harvard.edu/abs/1982RSPTA.307..148B/abstract
[49]  Guth, A.H. (1983) Phase Transitions in the Very Early Universe. The Very Early Universe: Proceedings of the Nuffield Workshop, Cambridge, 1983, 171-204.
https://ui.adsabs.harvard.edu/abs/1983veu..conf..171G/abstract

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413