全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Behavioral Model of Molecular Gap-Type Atomic Switches and Its SPICE Integration

DOI: 10.4236/cs.2022.131001, PP. 1-12

Keywords: Memristor, Atomic Switch, Behavioral Model, SPICE

Full-Text   Cite this paper   Add to My Lib

Abstract:

Atomic switches can be used in future nanodevices and to realize conceptually novel electronics in new types of computer architecture because of their simple structure, ease of operation, stability, and reliability. The atomic switch is a single solid-state switch with inherent learning abilities that exhibits various nonlinear behaviors with network devices. However, previous studies focused on experiments and nonvolatile memory applications, and studies on the application of the physical properties of the atomic switch in computing were nonexistent. Therefore, we present a simple behavioral model of a molecular gap-type atomic switch that can be included in a simulator. The model was described by three simple equations that reproduced the bistability using a double-well potential and was able to easily be transferred to a simulator using arbitrary numerical values and be integrated into HSPICE. Simulations using the experimental parameters of the proposed atomic switch agreed with the experimental results. This model will allow circuit designers to explore new architectures, contributing to the development of new computing methods.

References

[1]  Eigler, D.M., Lutz, C.P. and Rudge, W.E. (1991) An Atomic Switch Realized with the Scanning Tunnelling Microscope. Nature, 352, 600-603.
https://doi.org/10.1038/352600a0
[2]  Terabe, K., Hasegawa, T., Nakayama, T. and Aono, M. (2005) Quantized Conductance Atomic Switch. Nature, 433, 47-50.
https://doi.org/10.1038/nature03190
[3]  Nayak, A., Tsuruoka, T., Terabe, K., Hasegawa, T. and Aono, M. (2011) Theoretical Investigation of Kinetics of a Cu2S-Based Gap-Type Atomic Switch. Applied Physics Letters, 98, Article ID: 233501.
https://doi.org/10.1063/1.3597154
[4]  Terabe, K., Hasegawa, T., Nakayama, T. and Aono, M. (2001) Quantum Point Contact Switch Realized by Solid Electrochemical Reaction. Riken Review, 37, 7-8.
https://doi.org/10.7567/SSDM.2001.D-8-3
[5]  Tamura, T., Hasegawa, T., Terabe, K., Nakayama, T., Sakamoto, T., Sunamura, H., Kawaura, H., Hosaka, S. and Aono, M. (2007) Material Dependence of Switching Speed of Atomic Switches Made from Silver Sulfide and from Copper Sulfide. Journal of Physics: Conference Series, 61, 1157-1161.
https://doi.org/10.1088/1742-6596/61/1/229
[6]  Waser, R. and Aono, M. (2007) Nanoionics-Based Resistive Switching Memories. Nature Materials, 6, 833-840.
https://doi.org/10.1038/nmat2023
[7]  Smith, D.P.E. (1995) Quantum Point Contact Switches. Science, 269, 371-373.
https://doi.org/10.1126/science.269.5222.371
[8]  Sakamotoa, T., Listerb, K. and Banno, N. (2007) Electronic Transport in Ta2O5 Resistive Switch. Applied Physics Letters, 91, Article ID: 092110.
https://doi.org/10.1063/1.2777170
[9]  Pascual, J.I., Méndez, J., Gómez-Herrero, J., Baró, A.M., Garcia, N. and Binh, Vu Thien, B. (1993) Quantum Contact in Gold Nanostructures by Scanning Tunneling Microscopy. Physical Review Letters, 71, 1852-1855.
https://doi.org/10.1103/PhysRevLett.71.1852
[10]  Wu, S., Tsuruoka, T., Terabe, K., Hasegawa, T., Hill, J.P., Ariga, K. and Aono, M. (2011) A Polymer-Electrolyte-Based Atomic Switch. Advanced Functional Materials, 21, 93-99.
https://doi.org/10.1002/adfm.201001520
[11]  Tada, M., Sakamoto, T., Banno, N., Aono, M., Hada, H. and Kasai, N. (2010) Nonvolatile Crossbar Switch Using TiOx/TaSiOy Solid Electrolyte. IEEE Transactions on Electron Devices, 57, 1987-1995.
https://doi.org/10.1109/TED.2010.2051191
[12]  Tamura, T., Hasegawa, T., Terabe, K., Nakayama, T., Sakamoto, T., Sunamura, H., Kawaura, H., Hosaka, S. and Aono, M. (2006) Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction. Japanese Journal of Applied Physics, 45, L364-L366.
https://doi.org/10.1143/JJAP.45.L364
[13]  Tsuruoka, T., Hasegawa, T., Terabe, K. and Aono, M. (2017) Operating Mechanism and Resistive Switching Characteristics of Two- and Three-Terminal Atomic Switches Using a Thin Metal Oxide Layer. Journal of Electroceramics, 39, 143-156.
https://doi.org/10.1007/s10832-016-0063-9
[14]  Demis, E.C., Aguilera, R., Sillin, H.O., Scharnhorst, K., Sandouk, E.J., Aono, M., Stieg, A.Z. and Gimzewski, J.K. (2015) Atomic Switch Networks—Nanoarchitectonic Design of a Complex System for Natural Computing. Nanotechnology, 26, Article ID: 204003.
https://doi.org/10.1088/0957-4484/26/20/204003
[15]  Strukov, D., Snider, G., Stewart, D. and Williams, R. (2008) The Missing Memristor Found. Nature, 453, 80-83.
https://doi.org/10.1038/nature06932
[16]  Hasegawa, T., Nayak, A., Ohno, T., Terabe, K., Tsuruoka, T., Gimzewski, J. and Aono, M. (2011) Memristive Operations Demonstrated by Gap-Type Atomic Switches. Applied Physics A, 102, 811-815.
https://doi.org/10.1007/s00339-011-6317-0
[17]  Tsuruoka, T., Hasegawa, T., Terabe, K. and Aono, M. (2012) Conductance Quantization and Synaptic Behavior in a Ta2O5-Based Atomic Switch. Nanotechnology, 23, Article ID: 435705.
https://doi.org/10.1088/0957-4484/23/43/435705
[18]  Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Shieh, H.H., Aono, M., Stieg, A.Z. and Gimzewski, J.K. (2012) Neuromorphic Atomic Switch Networks. PLoS ONE, 7, e42772.
https://doi.org/10.1371/journal.pone.0042772
[19]  Sillin, H.O., Aguilera, R., Shieh, H., Avizienis, A.V., Masakazu, A., Stieg, A.Z. and Gimzewski, J.K. (2013) A Theoretical and Experimental Study of Neuromorphic Atomic Switch Networks for Reservoir Computing. Nanotechnology, 24, Article ID: 384004.
https://doi.org/10.1088/0957-4484/24/38/384004
[20]  Stieg, A.Z., Avizienis, A.V., Sillin, H.O., Martin-Olmos, C., Aono, M. and Gimzewski, J.K. (2012) Emergent Criticality in Complex Turing B-Type Atomic Switch Networks. Advanced Materials, 24, 286-293.
https://doi.org/10.1002/adma.201103053
[21]  Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J.K. and Aono, M. (2010) Learning Abilities Achieved by a Single Solid-State Atomic Switch. Advanced Materials, 22, 1831-1834.
https://doi.org/10.1002/adma.200903680
[22]  Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J.K. and Aono, M. (2011) Short-Term Plasticity and Long-Term Potentiation Mimicked in Single Inorganic Synapses. Nature Materials, 10, 591-595.
https://doi.org/10.1038/nmat3054
[23]  Wedig, A., Luebben, M., Cho, D., Moors, M., Skaja, K., Rana, V., Hasegawa, T., Adepalli, K., Yildiz, B., Waser, R. and Valov, I. (2015) Nanoscale Cation Motion in TaOx, HfOx and TiOx Memristive Systems. Nature Nanotechnology, 11, 67-74.
https://doi.org/10.1038/nnano.2015.221
[24]  Nayak, A., Unayama, S., Tai, S., Tsuruoka, T., Waser, R., Aono, M., Valov, I. and Hasegawa, T. (2018) Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots. Advanced Materials, 30, Article ID: 1703261.
https://doi.org/10.1002/adma.201703261
[25]  Valov, I. and Kozicki, M.N. (2013) Cation-Based Resistance Change Memory. Journal of Physics D: Applied Physics, 46, Article ID: 074005.
https://doi.org/10.1088/0022-3727/46/7/074005
[26]  Kaeriyama, S., Sakamoto, T., Sunamura, H., Mizuno, M., Kawaura, H., Hasegawa, T., Terabe, K., Nakayama, T. and Aono, M. (2005) A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch. IEEE Journal of Solid-State Circuits, 40, 168-176.
https://doi.org/10.1109/JSSC.2004.837244
[27]  Suzuki, A., Tsuruoka, T. and Hasegawa, T. (2019) Time-Dependent Operations in Molecular Gap Atomic Switches. Physica Status Solidi B Basic Research, 256, Article ID: 1900068.
https://doi.org/10.1002/pssb.201900068
[28]  Nayak, A., Tamura, T., Tsuruoka, T., Terabe, K., Hosaka, S., Hasegawa, T. and Aono, M. (2010) Rate-Limiting Processes Determining the Switching Time in a Ag2S Atomic Switch. Journal of Physical Chemistry Letters, 1, 604-608.
https://doi.org/10.1021/jz900375a
[29]  Akou, N., Asai, T., Yanagida, T., Kawai, T. and Amemiya, Y. (2010) A Behavioral Model of Unipolar Resistive RAMs and Its Application to HSPICE Integration. IEICE Electronics Express, 7, 1467-1473.
[30]  Sheridan, P., Kim, K., Gaba, S., Chang, T., Chen, L. and Lu, W. (2011) Device and SPICE Modeling of RRAM Devices. Nanoscale, 3, 3833-3840.
https://doi.org/10.1039/c1nr10557d
[31]  Kubota, H., Hasegawa, T., Akai-Kasaya, M. and Asai, T. (2021) Reservoir Computing on Atomic Switch Arrays with High Precision and Excellent Memory Characteristics. Journal of Signal Processing, 25, 123-126.
https://doi.org/10.2299/jsp.25.123

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413