全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Research Progress of ANP, NPRA, and Cx43 in Gastric Cancer

DOI: 10.4236/ojpathology.2022.122007, PP. 52-63

Keywords: ANP, NPRA, Cx43, Gastric Cancer, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

The occurrence and development of gastric cancer are regulated by many factors and result from the joint action of many factors. Studies have shown that ANP, NPRA, and Cx43 play a vital role in the proliferation and migration of gastric cancer. This article reviews the relationship between Atrial natriuretic peptide (ANP), Atrial natriuretic peptide receptor A (NPRA), and Connexin43 (Cx43) with the occurrence and development of gastric cancer. The review aims to provide an effective reference value for scientific research and clinical treatment.

References

[1]  Fan, X.S., Li, L. and Huang, Q. (2018) Some Important Problems in Precise Pathological Diagnosis of Gastric Cancer. Chinese Journal of Pathology, 47, 481-485.
[2]  Han, Y.X., Fan, G.P. and Liu, H.Y. (2018) Study on the Mechanism of Mir-940 Regulating the Growth and Migration of Gastric Cancer Cells. Genomics and Applied Biology, 37, 155-163.
[3]  Nakagawa, Y., Nishikimi, T. and Kuwahara, K. (2019) Atrial and Brain Natriuretic Peptides: Hormones Secreted from the Heart. Peptides, 111, 18-25.
https://doi.org/10.1016/j.peptides.2018.05.012
[4]  Xu, M., Liu, X., Li, P., et al. (2021) Modified Natriuretic Peptides and Their Potential Role in Cancer Treatment. Biomedical Journal.
[5]  Arancio, W., Ahmed, A., Basset, C., et al. (2021) Atrial Natriuretic Peptide Differentiates between Primary Submandibular Gland Squamous Cell Carcinoma and Oral Squamous Cell Carcinoma: Preliminary Data. Journal of Biological Regulators and Homeostatic Agents, 35, 729-733.
[6]  Song, L., Jia, Q., Zhou, Y.Y., et al. (2020) Analysis and Validation of the Potential Anti-Tumor Mechanism of Monkshood Alkaloids Based on Biological Large Database. Journal of Nanjing University of Chinese Medicine, 36, 655-660.
[7]  Qi, C.L., Cao, J.Y., He, Y.J., et al. (2018) Inhibitory Effect of Atrial Natriuretic Peptide on the Growth of Transplanted Melanoma in Knockout Mice. Chinese Journal of Comparative Medicine, 28, 15-18.
[8]  Takashi, N., Haruko, Y., Toshimitsu, H., et al. (2017) A Multicenter Randomized Controlled Trial of Surgery Alone or Surgery with Atrial Natriuretic Peptide in Lung Cancer Surgery: Study Protocol for a Randomized Controlled Trial. Trials, 18, 183.
https://doi.org/10.1186/s13063-017-1928-1
[9]  Nojiri, T., Hosoda, H., Tokudome, T., et al. (2018) Atrial Natriuretic Peptide Prevents Cancer Metastasis through Vascular Endothelial Cells. Proceedings of the National Academy of Sciences of the United States of America, 115, 7883-7886.
https://doi.org/10.1073/pnas.1811802115
[10]  Yue, X.H. (2019) Study on Anticancer Effect of ANP Expressed by Recombinant Adenovirus on Tongue Squamous Cell Carcinoma. Hubei University of Technology, Wuhan.
[11]  Takahashi, H., Takeda, T., Nishizawa, Y., et al. (2020) Phase I Study of the Administration of Low-Dose Perioperative Human Atrial Natriuretic Peptide in Patients with Resectable Colorectal Cancer. Anticancer Research, 40, 5301-5307.
https://doi.org/10.21873/anticanres.14536
[12]  Kozlowski, M.R. and Kozlowski, R.E. (2020) A Novel, Small Peptide with Activity against Human Pancreatic Cancer. The American Journal of Cancer Research, 10, 1356-1365.
[13]  Aleck, K., Hallman, K., Quigley, M., et al. (2017) Effects of Atrial Natriuretic Peptide on p53 and Estrogen Receptor in Breast Cancer Cells. BioResearch Open Access, 6, 141-150.
https://doi.org/10.1089/biores.2017.0009
[14]  Zhang, J., Li, Q., Yan, Y., et al. (2015) Effect of ANP on Proliferation of AGS in Human Gastric Cancer Cells and Its Mechanism. Progress of Modern General Surgery in China, 18, 425-429.
[15]  Li, X.W. and Li, C.H. (2018) Expression and Clinical Significance of Atrial Natriuretic Peptide in Gastric Cancer. Hebei Medical, 24, 755-760.
[16]  Hao, M.L., Liu, H.W., Li, C.H., et al. (2020) Effects of ANP Expression and MBP Signaling Pathway on Cell Invasion and Metastasis in Gastric Cancer. Journal of Clinical and Experimental Pathology, 3, 11-14.
[17]  Zhu, Y.Q., Li, C.H., He, T., et al. (2020) Effect of ANP on the Proliferation and Migration of Gastric Cancer mgC-803 Cells and Its Mechanism. Hebei Medical A, 26, 1943-1947.
[18]  Li, C.H., Liu, M., Pan, L.H., et al. (2020) ANP Reduced Hedgehog Signaling-Mediated Activation of Matrix Metalloproteinase-9 in Gastric Cancer Cell Line MGC-803. Gene, 762, Article ID: 145044.
https://doi.org/10.1016/j.gene.2020.145044
[19]  Zhang, J., Li, M., Yang, Y., et al. (2015) NPR-A: A Therapeutic Target in Inflammation and Cancer. Critical Reviews in Eukaryotic Gene Expression, 25, 41-46.
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2015012447
[20]  Mahinrad, S., Ferguson, I., Macfarlane, P.W., et al. (2019) Spatial QRS-T Angle and Cognitive Decline in Older Subjects. Journal of Alzheimer’s Disease, 67, 279-289.
https://doi.org/10.3233/JAD-180633
[21]  Qu, J., Zhao, X., Liu, X., et al. (2019) Natriuretic Peptide Receptor a Promotes Breast Cancer Development by Upregulating MMP9. The American Journal of Cancer Research, 9, 1415-1428.
[22]  Tan, H., Lin, L., Huang, L., et al. (2019) Is Atrial Natriuretic Peptide (ANP) and Natriuretic Peptide Receptor-A (NPR-A) Expression in Human Placenta and Decidua Normal. Medical Science Monitor, 25, 2868-2878.
https://doi.org/10.12659/MSM.915449
[23]  Nakao, Y., Yamada, S., Yanamoto, S., et al. (2017) Natriuretic Peptide Receptor A Is Related to the Expression of Vascular Endothelial Growth Factors A and C, and Is Associated with the Invasion Potential of Tongue Squamous Cell Carcinoma. International Journal of Oral and Maxillofacial Surgery, 46, 1237-1242.
https://doi.org/10.1016/j.ijom.2017.04.022
[24]  Li, Z., Wang, J.W., Wang, W.Z., et al. (2016) Natriuretic Peptide Receptor A Inhibition Suppresses Gastric Cancer Development through Reactive Oxygen Species-Mediated G2/M Cell Cycle Arrest and Cell Death. Free Radical Biology & Medicine, 99, 593-607.
https://doi.org/10.1016/j.freeradbiomed.2016.08.019
[25]  Zhang, J., Qu, J., Yang, Y., et al. (2014) Impact of NPR-A Expression in Gastric Cancer Cells. International Journal of Clinical and Experimental Medicine, 7, 3209-3214.
[26]  Han, J.J. (2021) Effects of NPRA Gene Silencing on Proliferation and Migration of Gastric Cancer Cell Line MGC-803 via AKT/mTOR Signaling Pathway and Cytoskeletal Protein β -Tubulin. Chengde Medical College, Chengde.
[27]  Zheng, Q., Li, Y., Zhang, D., et al. (2017) ANP Promotes Proliferation and Inhibits Apoptosis of Ovarian Granulosa Cells by NPRA/PGRMC1/EGFR Complex and Improves Ovary Functions of PCOS Rats. Cell Death & Disease, 8, e3145.
https://doi.org/10.1038/cddis.2017.494
[28]  Wang, J., Yang, Z.Y., Guo, Y.F., et al. (2018) Targeting Different Domains of Gap Junction Protein to Control Malignant Glioma. Neuro-Oncology, 20, 885-896.
https://doi.org/10.1093/neuonc/nox207
[29]  Graham, S.V., Jiang, J.X. and Mesnil, M. (2018) Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. International Journal of Molecular Sciences, 19, 1645.
https://doi.org/10.3390/ijms19061645
[30]  Aasen, T., Leithe, E., Graham, S.V., et al. (2019) Connexins in Cancer: Bridging the Gap to the Clinic. Oncogene, 38, 4429-4451.
https://doi.org/10.1038/s41388-019-0741-6
[31]  Nalewajska, M., Marchelek-Myśliwiec, M., Opara-Bajerowicz, M., et al. (2020) Connexins-Therapeutic Targets in Cancers. International Journal of Molecular Sciences, 21, 9119.
https://doi.org/10.3390/ijms21239119
[32]  Sun, M.H. (2020) Effect of Cx43 on the Phenotype and Chemotherapeutic Resistance of Human Breast Cancer Cells McF-7. Jilin University, Changchun.
[33]  Alaga, K.C., Crawford, M., Dagnino, L., et al. (2017) Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas. Journal of Cancer, 8, 1123-1128.
https://doi.org/10.7150/jca.18569
[34]  Talbot, J., Dupuy, M., Morice, S., et al. (2020) Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors. Biomolecules, 10, 1240.
https://doi.org/10.3390/biom10091240
[35]  Wu, D.P., Zhou, Y., Hou, L.X., et al. (2021) Cx43 Deficiency Confers EMT-Mediated Tamoxifen Resistance to Breast Cancer via c-Src/PI3K/Akt Pathway. International Journal of Biological Sciences, 17, 2380-2398.
https://doi.org/10.7150/ijbs.55453
[36]  Sinyuk, M., Mulkearns-Hubert, E.E., Reizes, O., et al. (2018) Cancer Connectors: Connexins, Gap Junctions, and Communication. Frontiers in Oncology, 8, Article No. 646.
https://doi.org/10.3389/fonc.2018.00646
[37]  Beckmann, A., Hainz, N., Tschernig, T. and Meier, C. (2019) Facets of Communication: Gap Junction Ultrastructure and Function in Cancer Stem Cells and Tumor Cells. Cancers, 11, 288.
https://doi.org/10.3390/cancers11030288
[38]  Hosseindoost, S., Hashemizadeh, S., Gharaylou, Z., et al. (2020) β2-Adrenergic Receptor Stimulation Upregulates Cx43 Expression on Glioblastoma Multiforme and Olfactory Ensheathing Cells. Journal of Molecular Neuroscience, 70, 1451-1460.
https://doi.org/10.1007/s12031-020-01542-7
[39]  Xie, D., Zheng, G.Z., Xie, P., et al. (2017) Antitumor Activity of Resveratrol against Human Osteosarcoma Cells: A Key Role of Cx43 and Wnt/β-Catenin Signaling Pathway. Oncotarget, 8, 111419-111432.
https://doi.org/10.18632/oncotarget.22810
[40]  Zhang, D., Yu, K., Yang, Z., et al. (2018) Silencing Ubc9 Expression Suppresses Osteosarcoma Tumorigenesis and Enhances Chemosensitivity to HSV-TK/GCV by Regulating Connexin 43 SUMOylation. International Journal of Oncology, 53, 1323-1331.
https://doi.org/10.3892/ijo.2018.4448
[41]  Asencio-Barría, C., Defamie, N., Sáez, J.C., et al. (2019) Direct Intercellular Communications and Cancer: A Snapshot of the Biological Roles of Connexins in Prostate Cancer. Cancers (Basel), 11, 1370.
https://doi.org/10.3390/cancers11091370
[42]  Boucher, J., Monvoisin, A., Vix, J., Mesnil, M., et al. (2018) Connexins, Important Players in the Dissemination of Prostate Cancer Cells. Biochimica et Biophysica Acta—Biomembranes, 1860, 202-215.
https://doi.org/10.1016/j.bbamem.2017.06.020
[43]  Jaraíz-Rodríguez, M., Talaverón, R., García-Vicente, L., et al. (2020) Connexin43 Peptide, TAT-Cx43266-283, Selectively Targets Glioma Cells, Impairs Malignant Growth, and Enhances Survival in Mouse Models in Vivo. Neuro-Oncology, 22, 493-504.
https://doi.org/10.1093/neuonc/noz243
[44]  He, D. and Li, H. (2020) Bifunctional Cx43 Mimic Peptide Grafted Hyaluronic Acid Hydrogels Inhibited Tumor Recurrence and Stimulated Wound Healing for Postsurgical Tumor Treatment. Advanced Functional Materials, 30, 1-20.
https://doi.org/10.1002/adfm.202004709
[45]  Chen, C.X., Luo, K.J., Yang, J.P., et al. (2020) Connexins and cAMP Cross-Talk in Cancer Progression and Metastasis. Cancers (Basel), 13, 58.
https://doi.org/10.3390/cancers13010058
[46]  Jindal, S., Chockalingam, S., Ghosh, S.S., et al. (2021) Connexin and Gap Junctions: Perspectives from Biology to Nanotechnology Based Therapeutics. Translational Research, 235, 144-167.
https://doi.org/10.1016/j.trsl.2021.02.008
[47]  Li, C.H., Hao, M.L., Sun, Y., et al. (2020) Ultrastructure of Gap Junction and Cx43 Expression in Gastric Cancer Tissues of the Patients. Archives of Medical Science, 16, 352-358.
https://doi.org/10.5114/aoms.2020.92859
[48]  Liu, X., Cao, K., Xu, C., et al. (2015) GATA-3 Augmentation Down-Regulates Connexin43 in Helicobacter pylori Associated Gastric Carcinogenesis. Cancer Biology & Therapy, 16, 987-996.
https://doi.org/10.1080/15384047.2015.1030552
[49]  Zhang, L.W., Zhang, A.D., Tan, S.J., et al. (2018) Expression of p-ezrin in Gastric Cancer. Chongqing Medical, 47, 2353-2358.
[50]  Kameoka, S., Kameyama, T., Hayashi, T., et al. (2016) Helicobacter pylori Induces IL-1β Protein through the Inflammasome Activation in Differentiated Macrophagic Cells. Biomedical Research, 37, 21-27.
https://doi.org/10.2220/biomedres.37.21
[51]  Tang, B., Peng, Z.H., Yu, P.W., et al. (2011) Expression and Significance of Cx43 and E-cadherin in Gastric Cancer and Metastatic Lymph Nodes. Medical Oncology, 28, 502-508.
https://doi.org/10.1007/s12032-010-9492-5
[52]  Sun, A.Q. (2020) TNF-α Up-Regulates Gastric Cancer Cell Stem and Peritoneal Metastasis by MZF-1/Cx43 Axis. China Medical University, Shenyang.
[53]  Lerotić, I., Vuković, P., Hrabar, D., et al. (2021) Expression of NEDD9 and Connexin-43 in Neoplastic and Stromal Cells of Gastric Adenocarcinoma. Bosnian Journal of Basic Medical Sciences, 21, 542-548.
https://doi.org/10.17305/bjbms.2020.5379
[54]  Kim, E.Y., Jun, K.H. and Yim, K. (2020) The Roles of Connexin 26, 32, and 43 as Prognostic Factors for Gastric Cancer. Anticancer Research, 40, 4537-4545.
https://doi.org/10.21873/anticanres.14459

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413