全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2022 

5-羟色胺在脂质代谢中的研究进展
Research Progresses for 5-Hydroxytryptamine in Lipid Metabolism

DOI: 10.12677/BP.2022.121001, PP. 1-9

Keywords: 血清素,脂质代谢,肥胖,能量稳态
Serotonin
, Lipid Metabolism, Obesity, Energy Balance

Full-Text   Cite this paper   Add to My Lib

Abstract:

血清素,又称5-羟色胺(5-hydroxytryptamine, 5-HT),是一种高度保守的生物胺,主要在胃肠道和中枢神经系统中高表达,可以结合7种不同受体家族的受体,参与机体众多的生理及病理过程。研究表明,血清素是能量摄入与消耗的主要调节剂,外周血清素通过上调脂质合成促进能量有效储存,进而诱发胰岛素抵抗、血脂异常、肝脂肪变性、凝血病和高血压等肥胖症的不利代谢后果,而中枢血清素可抑制食欲并通过驱动交感神经增加棕色脂肪组织的能量消耗。因此,5-HT在肥胖疾病中的作用备受关注。本文结合最新的研究进展对5-HT在脂质代谢中的作用进行简要归纳。
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a highly conserved biogenic amine that is highly expressed in the gastrointestinal tract and central nervous system. It participates in numerous physiological and pathological processes by binding to seven different receptor families. Serotonin has been shown it is the main regulator of energy intake and consumption. Peripheral serotonin promotes effective energy storage by up-regulating lipid synthesis, inducing adverse metabolic consequences, such as obesity, insulin resistance, dyslipidemia, hepatic steatosis, coagulopathy and hypertension. Central serotonin suppresses appetite and increases energy expenditure by increasing sympathetic drive to brown adipose tissue. Therefore, the role of 5-HT in obesity has attracted much attention. In this review, we highlight the most recent advances for the roles of 5-HT in lipid metabolism.

References

[1]  Rapport, M.M., Green, A.A. and Page, I.H. (1948) Serum Vasoconstrictor, Serotonin; Isolation and Characterization. The Journal of Biological Chemistry, 176, 1243-1251.
https://doi.org/10.1016/S0021-9258(18)57137-4
[2]  Ber-ger, M., Gray, J.A. and Roth, B.L. (2009) The Expanded Biology of Serotonin. Annual Review of Medicine, 60, 355-366.
https://doi.org/10.1146/annurev.med.60.042307.110802
[3]  Khan, W.I. and Ghia, J.E. (2010) Gut Hormones: Emerging Role in Immune Activation and Inflammation. Clinical and Experimental Immunology, 161, 19-27.
https://doi.org/10.1111/j.1365-2249.2010.04150.x
[4]  Walther, D.J., Peter, J.U., Bashammakh, S., et al. (2003) Synthesis of Serotonin by a Second Tryptophan Hydroxylase Isoform. Science, 299, 76.
https://doi.org/10.1126/science.1078197
[5]  Zhang, X., Beaulieu, J.M., Sotnikova, T.D., et al. (2004) Tryptophan Hydroxylase-2 Controls Brain Serotonin Synthesis. Science, 305, 217.
https://doi.org/10.1126/science.1097540
[6]  C?té, F., Thévenot, E., Fligny, C., et al. (2003) Disruption of the Nonneuronal tph1 Gene Demonstrates the Importance of Peripheral Serotonin in Cardiac Function. Proceedings of the National Academy of Sciences of the United States of America, 100, 13525-13530.
https://doi.org/10.1073/pnas.2233056100
[7]  Yabut, J.M., Crane, J.D., Green, A.E., et al. (2019) Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 40, 1092-1107.
https://doi.org/10.1210/er.2018-00283
[8]  Fitzpatrick, P.F. (1999) Tetrahydropterin-Dependent Amino Acid Hydroxylases. Annual Review of Biochemistry, 68, 355-381.
https://doi.org/10.1146/annurev.biochem.68.1.355
[9]  Walther, D.J., Peter, J.U., Winter, S., et al. (2003) Seroto-nylation of Small GTPases Is a Signal Transduction Pathway that Triggers Platelet Alpha-Granule Release. Cell, 115, 851-862.
https://doi.org/10.1016/S0092-8674(03)01014-6
[10]  Nichols, D.E. and Nichols, C.D. (2008) Serotonin Receptors. Chemical Reviews, 108, 1614-1641.
https://doi.org/10.1021/cr078224o
[11]  King, M.V., Marsden, C.A. and Fone, K.C. (2008) A Role for the 5-HT(1A), 5-HT4 and 5-HT6 Receptors in Learning and Memory. Trends in Pharmacological Sciences, 29, 482-492.
https://doi.org/10.1016/j.tips.2008.07.001
[12]  Eglen, R.M., Wong, E.H., Dumuis, A., et al. (1995) Central 5-HT4 Receptors. Trends in Pharmacological Sciences, 16, 391-398.
https://doi.org/10.1016/S0165-6147(00)89081-1
[13]  Cortes-Altamirano, J.L., Olmos-Hernandez, A., Jaime, H.B., et al. (2018) Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and Their Role in the Modulation of Pain Response in the Central Nervous System. Current Neuropharmacology, 16, 210-221.
https://doi.org/10.2174/1570159X15666170911121027
[14]  Sah, V.P., Seasholtz, T.M., Sagi, S.A., et al. (2000) The Role of Rho in G Protein-Coupled Receptor Signal Transduction. Annual Review of Pharmacology and Toxicology, 40, 459-489.
https://doi.org/10.1146/annurev.pharmtox.40.1.459
[15]  Barnes, N.M., Hales, T.G., Lummis, S.C., et al. (2009) The 5-HT3 Receptor—The Relationship between Structure and Function. Neuropharmacology, 56, 273-284.
https://doi.org/10.1016/j.neuropharm.2008.08.003
[16]  Machu, T.K. (2011) Therapeutics of 5-HT3 Receptor An-tagonists: Current Uses and Future Directions. Pharmacology & Therapeutics, 130, 338-347.
https://doi.org/10.1016/j.pharmthera.2011.02.003
[17]  Evans, R.M., Barish, G.D. and Wang, Y.X. (2004) PPARs and the Complex Journey to Obesity. Nature Medicine, 10, 355-361.
https://doi.org/10.1038/nm1025
[18]  Lehrke, M. and LAZAR, M.A. (2005) The Many Faces of PPARgamma. Cell, 123, 993-999.
https://doi.org/10.1016/j.cell.2005.11.026
[19]  Mckenna, N.J., Cooney, A.J., Demayo, F.J., et al. (2009) Mini-review: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Molecular Endocrinology, 23, 740-746.
https://doi.org/10.1210/me.2009-0135
[20]  Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., et al. (2007) Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance. Nature, 447, 1116-1120.
https://doi.org/10.1038/nature05894
[21]  Walczak, R. and Tontonoz, P. (2002) PPARadigms and PPARadoxes: Expanding roles for PPARgamma in the Control of Lipid Metabolism. Journal of Lipid Research, 43, 177-186.
https://doi.org/10.1016/S0022-2275(20)30159-0
[22]  Hirai, H., Tanaka, K., Takano, S., et al. (2002) Cutting Edge: Agonistic Effect of Indomethacin on a Prostaglandin D2 Receptor, CRTH2. Journal of Immunology, 168, 981-985.
https://doi.org/10.4049/jimmunol.168.3.981
[23]  Waku, T., Shiraki, T., Oyama, T., et al. (2010) The Nu-clear Receptor PPARγ Individually Responds to Serotonin- and Fatty Acid-Metabolites. The EMBO Journal, 29, 3395-3407.
https://doi.org/10.1038/emboj.2010.197
[24]  Skurk, T., Alberti-Huber, C., Herder, C., et al. (2007) Relationship between Adipocyte Size and Adipokine Expression and Secretion. The Journal of Clinical Endocrinology and Metabolism, 92, 1023-1033.
https://doi.org/10.1210/jc.2006-1055
[25]  Benrick, A., Chanclón, B., Micallef, P., et al. (2017) Adiponectin Pro-tects against Development of Metabolic Disturbances in a PCOS Mouse Model. Proceedings of the National Academy of Sciences of the United States of America, 114, E7187-E7196.
https://doi.org/10.1073/pnas.1708854114
[26]  Ro-sene, D. and Spiegelman, B.M. (2014) What We Talk about When We Talk about Fat. Cell, 156, 20-44.
https://doi.org/10.1016/j.cell.2013.12.012
[27]  Zhao, G.N., Tian, Z.W., Tian, T., et al. (2021) TMBIM1 is an In-hibitor of Adipogenesis and Its Depletion Promotes Adipocyte Hyperplasia and Improves Obesity-Related Metabolic Disease. Cell Metabolism, 33, 1640-1654.E8.
https://doi.org/10.1016/j.cmet.2021.05.014
[28]  Foti, M., Porcheron, G., Fournier, M., et al. (2007) The Neck of Caveolae Is a Distinct Plasma Membrane Subdomain that Concentrates Insulin Receptors in 3T3-L1 Adipocytes. Pro-ceedings of the National Academy of Sciences of the United States of America, 104, 1242-1247.
https://doi.org/10.1073/pnas.0610523104
[29]  Reed, B.C., Kaufmann, S.H., Mackall, J.C., et al. (1977) Altera-tions in Insulin Binding Accompanying Differentiation of 3T3-L1 Preadipocytes. Proceedings of the National Academy of Sciences of the United States of America, 74, 4876-4880.
https://doi.org/10.1073/pnas.74.11.4876
[30]  KOHLER, H.P. and GRANT, P.J. (2000) Plasminogen-Activator Inhibitor type 1 and Coronary Artery Disease. The New England Journal of Medicine, 342, 1792-1801.
https://doi.org/10.1056/NEJM200006153422406
[31]  Eriksson, P., Reynisdottir, S., L?nnqvist, F., et al. (1998) Adipose Tissue Secretion of Plasminogen Activator Inhibitor-1 in Non-Obese and Obese Individuals. Diabetologia, 41, 65-71.
https://doi.org/10.1007/s001250050868
[32]  Yamauchi, T., Kamon, J., Ito, Y., et al. (2003) Cloning of Adiponectin Receptors that Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769.
https://doi.org/10.1038/nature01705
[33]  Uchida-Kitajima, S., Yamauchi, T., Takashina, Y., et al. (2008) 5-Hydroxytryptamine 2A Receptor Signaling Cascade Modulates Adiponectin and Plasminogen Activator Inhibitor 1 Expression in Adipose Tissue. FEBS Letters, 582, 3037-3044.
https://doi.org/10.1016/j.febslet.2008.07.044
[34]  Kinoshita, M., Ono, K., Horie, T., et al. (2010) Regulation of Adipocyte Differentiation by Activation of Serotonin (5-HT) Receptors 5-HT2AR and 5-HT2CR and Involvement of MicroRNA-448-Mediated Repression of KLF5. Molecular Endocrinology, 24, 1978-1987.
https://doi.org/10.1210/me.2010-0054
[35]  Kim, S.P., Ha, J.M., Yun, S.J., et al. (2010) Transcriptional Activation of Peroxisome Proliferator-Activated Receptor-Gamma Requires Activation of Both Protein Kinase A and Akt during Adipocyte Differentiation. Biochemical and Biophysical Research Communications, 399, 55-59.
https://doi.org/10.1016/j.bbrc.2010.07.038
[36]  Yun, J., Jin, H., Cao, Y., et al. (2018) RNA-Seq Analysis Reveals a Positive Role of HTR2A in Adipogenesis in Yan Yellow Cattle. International Journal of Molecular Sciences, 19, Arti-cle No. 1760.
https://doi.org/10.3390/ijms19061760
[37]  Peng, X.D., Xu, P.Z., Chen, M.L., et al. (2003) Dwarfism, Impaired Skin Development, Skeletal Muscle Atrophy, Delayed Bone Development, and Impeded Adipogenesis in Mice Lacking Akt1 and Akt2. Genes & Development, 17, 1352-1365.
https://doi.org/10.1101/gad.1089403
[38]  Mota de Sá, P., Richard, A.J., Hang, H., et al. (2017) Transcriptional Regulation of Adipogenesis. Comprehensive Physiology, 7, 635-674.
https://doi.org/10.1002/cphy.c160022
[39]  Yang, M., Sun, J., Zhang, T., et al. (2008) Deficiency and In-hibition of Cathepsin K Reduce Body Weight Gain and Increase Glucose Metabolism in Mice. Arteriosclerosis, Throm-bosis, and Vascular Biology, 28, 2202-2208.
https://doi.org/10.1161/ATVBAHA.108.172320
[40]  S?hle, J., Machuy, N., Smailbegovic, E., et al. (2012) Iden-tification of New Genes Involved in Human Adipogenesis and Fat Storage. PLoS ONE, 7, e31193.
https://doi.org/10.1371/journal.pone.0031193
[41]  Lin, Y., Bao, B., Yin, H., et al. (2019) Peripheral Cathepsin L Inhibition Induces Fat Loss in C. Elegans and Mice through Promoting Central Serotonin Synthesis. BMC Biology, 17, Article No. 93.
https://doi.org/10.1186/s12915-019-0719-4
[42]  Cannon, B. and Nedergaard, J. (2004) Brown Adipose Tissue: Function and Physiological Significance. Physiological Reviews, 84, 277-359.
https://doi.org/10.1152/physrev.00015.2003
[43]  Kajimura, S., Seale, P. and Spiegelman, B.M. (2010) Transcrip-tional Control of Brown Fat Development. Cell Metabolism, 11, 257-262.
https://doi.org/10.1016/j.cmet.2010.03.005
[44]  Bargut, T.C., Aguila, M.B. and Mandarim-DE-Lacerda, C.A. (2016) Brown Adipose Tissue: Updates in Cellular and Molecular Biology. Tissue & Cell, 48, 452-460.
https://doi.org/10.1016/j.tice.2016.08.001
[45]  Harms, M. and Seale, P. (2013) Brown and Beige Fat: Develop-ment, Function and Therapeutic Potential. Nature Medicine, 19, 1252-1263.
https://doi.org/10.1038/nm.3361
[46]  Kajimura, S. and Saito, M. (2014) A New Era in Brown Adipose Tissue Bi-ology: Molecular Control of Brown Fat Development and Energy Homeostasis. Annual Review of Physiology, 76, 225-249.
https://doi.org/10.1146/annurev-physiol-021113-170252
[47]  Oh, C.M., Park, S. and Kim, H. (2016) Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes & Metabolism Journal, 40, 89-98.
https://doi.org/10.4093/dmj.2016.40.2.89
[48]  Jeong, J.H., Lee, D.K., Blouet, C., et al. (2015) Cholinergic Neu-rons in the Dorsomedial Hypothalamus Regulate Mouse Brown Adipose Tissue Metabolism. Molecular Metabolism, 4, 483-492.
https://doi.org/10.1016/j.molmet.2015.03.006
[49]  Mcglashon, J.M., Gorecki, M.C., Kozlowski, A.E., et al. (2015) Central Serotonergic Neurons Activate and Recruit Thermogenic Brown and Beige Fat and Regulate Glucose and Lipid Homeostasis. Cell Metabolism, 21, 692-705.
https://doi.org/10.1016/j.cmet.2015.04.008
[50]  Montanari, T., Po??i?, N. and Colitti, M. (2017) Factors Involved in White-to-Brown Adipose Tissue Conversion and in Thermogenesis: A Review. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 18, 495-513.
https://doi.org/10.1111/obr.12520
[51]  Ni-soli, E. and Carruba, M.O. (2000) An Assessment of the Safety and Efficacy of Sibutramine, an Anti-Obesity Drug with a Novel Mechanism of Action. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 1, 127-139.
https://doi.org/10.1046/j.1467-789x.2000.00020.x
[52]  Li, M.F. and Cheung, B.M. (2011) Rise and Fall of Anti-Obesity Drugs. World Journal of Diabetes, 2, 19-23.
https://doi.org/10.4239/wjd.v2.i2.19
[53]  Da Silva, A.I., Braz, G.R., Pedroza, A.A., et al. (2015) Fluoxetine In-duces Lean Phenotype in Rat by Increasing the Brown/White Adipose Tissue Ratio and UCP1 Expression. Journal of Bioenergetics and Biomembranes, 47, 309-318.
https://doi.org/10.1007/s10863-015-9617-9
[54]  Crane, J.D., Palanivel, R., Mottillo, E.P., et al. (2015) Inhibiting Peripheral Serotonin Synthesis Reduces Obesity and Metabolic Dysfunction by Promoting Brown Adipose Tissue Thermogenesis. Nature Medicine, 21, 166-172.
https://doi.org/10.1038/nm.3766
[55]  Wu, J., Bostr?m, P., Sparks, L.M., et al. (2012) Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell, 150, 366-376.
https://doi.org/10.1016/j.cell.2012.05.016
[56]  Garcia, R.A., Roemmich, J.N. and Claycombe, K.J. (2016) Evalua-tion of Markers of Beige Adipocytes in White Adipose Tissue of the Mouse. Nutrition & Metabolism, 13, Article No. 24.
https://doi.org/10.1186/s12986-016-0081-2
[57]  Steinberg, G.R. (2018) Cellular Energy Sensing and Metabo-lism-Implications for Treating Diabetes: The 2017 Outstanding Scientific Achievement Award Lecture. Diabetes, 67, 169-179.
https://doi.org/10.2337/dbi17-0039
[58]  Nakamura, K. and Morrison, S.F. (2011) Central Efferent Pathways for Cold-Defensive and Febrile Shivering. The Journal of Physiology, 589, 3641-3658.
https://doi.org/10.1113/jphysiol.2011.210047
[59]  Nakamura, K., Matsumura, K., Hübschle, T., et al. (2004) Iden-tification of Sympathetic Premotor Neurons in Medullary Raphe Regions Mediating Fever and Other Thermoregulatory Functions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24, 5370-5380.
https://doi.org/10.1523/JNEUROSCI.1219-04.2004
[60]  O’Neil, P.M., Smith, S.R., Weissman, N.J., et al. (2012) Randomized Placebo-Controlled Clinical Trial of Lorcaserin for Weight Loss in Type 2 Diabetes Mellitus: The BLOOM-DM Study. Obesity, 20, 1426-1436.
https://doi.org/10.1038/oby.2012.66
[61]  Krashes, M.J., Koda, S., Ye, C., et al. (2011) Rapid, Reversible Activa-tion of AgRP Neurons Drives Feeding Behavior in Mice. The Journal of Clinical Investigation, 121, 1424-1428.
https://doi.org/10.1172/JCI46229
[62]  Small, C.J., Liu, Y.L., Stanley, S.A., et al. (2003) Chronic CNS Admin-istration of Agouti-Related Protein (Agrp) Reduces Energy Expenditure. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 27, 530-533.
https://doi.org/10.1038/sj.ijo.0802253
[63]  Ruan, H.B., Dietrich, M.O., Liu, Z.W., et al. (2014) O-GlcNAc Trans-ferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell, 159, 306-317.
https://doi.org/10.1016/j.cell.2014.09.010
[64]  Burke, L.K., Darwish, T., Cavanaugh, A.R., et al. (2017) mTORC1 in AGRP Neurons Integrates Exteroceptive and Interoceptive Food-Related Cues in the Modulation of Adaptive Energy Expenditure in Mice. eLife, 6, e22848.
[65]  Deng, J., Yuan, F., Guo, Y., et al. (2017) Deletion of ATF4 in AgRP Neu-rons Promotes Fat Loss Mainly via Increasing Energy Expenditure. Diabetes, 66, 640-650.
https://doi.org/10.2337/db16-0954
[66]  Dodd, G.T., Andrews, Z.B., Simonds, S.E., et al. (2017) A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metabolism, 26, 375-393.E7.
https://doi.org/10.1016/j.cmet.2017.07.013
[67]  Berglund, E.D., Liu, C., Sohn, J.W., et al. (2013) Serotonin 2C Receptors in Pro-Opiomelanocortin Neurons Regulate Energy and Glucose Homeostasis. The Journal of Clinical Inves-tigation, 123, 5061-5070.
https://doi.org/10.1172/JCI70338
[68]  Zhang, X., Wang, X., Yin, H., et al. (2019) Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Reports, 28, 792-803.E4.
https://doi.org/10.1016/j.celrep.2019.06.044
[69]  Lim, S., Honek, J., Xue, Y., et al. (2012) Cold-Induced Activa-tion of Brown Adipose Tissue and Adipose Angiogenesis in Mice. Nature protocols, 7, 606-615.
https://doi.org/10.1038/nprot.2012.013
[70]  Lee, Y.H., Petkova, A.P., Mottillo, E.P., et al. (2012) In Vivo Identi-fication of Bipotential Adipocyte Progenitors Recruited by β3-Adrenoceptor Activation and High-Fat Feeding. Cell Me-tabolism, 15, 480-491.
https://doi.org/10.1016/j.cmet.2012.03.009
[71]  Roh, H.C., Tsai, L.T.Y., Shao, M., et al. (2018) Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metabolism, 27, 1121-1137.E5.
https://doi.org/10.1016/j.cmet.2018.03.005
[72]  Hellman, B., Larsson, S. and Westman, S. (1963) Mast Cell Con-tent and fatty Acid Metabolism in the Epididymal Fat Pad of Obese Mice. Acta Physiologica Scandinavica, 58, 255-262.
https://doi.org/10.1111/j.1748-1716.1963.tb02647.x
[73]  Divoux, A., Moutel, S., Poitou, C., et al. (2012) Mast Cells in Human Adipose Tissue: Link with Morbid Obesity, Inflammatory Status, and Diabetes. The Journal of Clinical Endocrinology and Metabolism, 97, E1677-E1685.
https://doi.org/10.1210/jc.2012-1532
[74]  Oh, C.M., Namkung, J., Go, Y., et al. (2015) Regulation of Systemic Energy Homeostasis by Serotonin in Adipose Tissues. Nature Communications, 6, Article No. 6794.
https://doi.org/10.1038/ncomms7794
[75]  Yabut, J.M., Desjardins, E.M., Chan, E.J., et al. (2020) Genetic Dele-tion of Mast Cell Serotonin Synthesis Prevents the Development of Obesity and Insulin Resistance. Nature Communica-tions, 11, Article No. 463.
https://doi.org/10.1038/s41467-019-14080-7
[76]  Younossi, Z., Anstee, Q.M., Marietti, M., et al. (2018) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20.
https://doi.org/10.1038/nrgastro.2017.109
[77]  Musso, G., Gambino, R. and Cassader, M. (2009) Recent Insights into Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Progress in Lipid Research, 48, 1-26.
https://doi.org/10.1016/j.plipres.2008.08.001
[78]  Pais, R., Barritt, A.S.T., Calmus, Y., et al. (2016) NAFLD and Liver Transplantation: Current Burden and Expected Challenges. Journal of Hepatology, 65, 1245-1257.
https://doi.org/10.1016/j.jhep.2016.07.033
[79]  Michelotti, G.A., Machado, M.V. and Diehl, A.M. (2013) NAFLD, NASH and Liver Cancer. Nature Reviews Gastroenterology & Hepatology, 10, 656-665.
https://doi.org/10.1038/nrgastro.2013.183
[80]  Namkung, J., Shong, K.E., Kim, H., et al. (2018) Inhibition of Ser-otonin Synthesis Induces Negative Hepatic Lipid Balance. Diabetes & Metabolism Journal, 42, 233-243.
https://doi.org/10.4093/dmj.2017.0084
[81]  Choi, W., Namkung, J., Hwang, I., et al. (2018) Serotonin Signals through a Gut-Liver Axis to Regulate Hepatic Steatosis. Nature Communications, 9, Article No. 4824.
https://doi.org/10.1038/s41467-018-07287-7
[82]  Osawa, Y., Kanamori, H., Seki, E., et al. (2011) L-tryptophan-Mediated Enhancement of Susceptibility to Nonalcoholic Fatty Liver Disease Is Dependent on the Mamma-lian Target of Rapamycin. The Journal of Biological Chemistry, 286, 34800-34808.
https://doi.org/10.1074/jbc.M111.235473
[83]  Haub, S., Ritze, Y., Ladel, I., et al. (2011) Serotonin Receptor Type 3 Antagonists Improve Obesity-Associated Fatty Liver Disease in Mice. The Journal of Pharmacology and Experimental Therapeutics, 339, 790-798.
https://doi.org/10.1124/jpet.111.181834
[84]  Kim, M., Hwang, I., Pagire, H.S., et al. (2020) Design, Synthesis, and Biological Evaluation of New Peripheral 5HT(2A) Antagonists for Nonalcoholic Fatty Liver Disease. Journal of Medicinal Chemistry, 63, 4171-4182.
https://doi.org/10.1021/acs.jmedchem.0c00002
[85]  Coates, M.D., Johnson, A.C., Greenwood-Van Meerveld, B., et al. (2006) Effects of Serotonin Transporter Inhibition on Gastrointestinal Motility and Colonic Sensitivity in the Mouse. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 18, 464-471.
https://doi.org/10.1111/j.1365-2982.2006.00792.x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413