全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有对数非线性项的拟线性椭圆方程解的存在性及多重性
Existence and Multiplicity of Solutions for a Class of Quasilinear Elliptic Equations with Logarithmic Nonlinearity

DOI: 10.12677/PM.2022.123044, PP. 400-410

Keywords: 拟线性,弱下半连续,非光滑
Quasilinear
, Weak Lower Semicontinuous, Nonsmooth

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论一类带有对数非线性项的拟线性椭圆方程解的存在性和多重性。对主项系数A(x,t)提出合适的条件,使用弱下半连续泛函的非光滑临界点定理证明该问题存在山路解和无穷多非平凡解。
In this paper, we consider the existence and multiplicity of solutions of a class of quasilinear elliptic equations with logarithmic nonlinearity. Under some appropriate conditions for the principal coefficient A(x,t), we use the nonsmooth critical point theorem of weak lower semicontinuous functional to prove the problem has mountain path solutions and infinite nontrivial solutions.

References

[1]  Candela, A.M. and Palmieri, P.G. (2009) Infinitely Many Solutions of Some Nonlinear Variational Equations. Calculus of Variations and Partial Differential Equations, 34, 495-530.
https://doi.org/10.1007/s00526-008-0193-2
[2]  Candela, A.M., Palmieri, G. and Salvatore, A. (2020) Multiple Solutions for Some Symmetric Supercritical Problems. Communications in Contemporary Mathematics, 22, Article ID: 1950075.
https://doi.org/10.1142/S0219199719500755
[3]  Candela, A.M. and Salvatore, A. (2020) Existence of Radial Bounded Solutions for Some Quasilinear Elliptic Equations in RN. Nonlinear Analysis, 191, Article ID: 111625.
https://doi.org/10.1016/j.na.2019.111625
[4]  Squassina, M. and Szulkin, A. (2015) Multiple Solutions to Loga-rithmic Schr?dinger Equations with Periodic Potential. Calculus of Variations and Partial Differential Equations, 54, 585-597.
https://doi.org/10.1007/s00526-014-0796-8
[5]  Ji, C. and Szulkin, A. (2016) A Logarithmic Schr?-dinger Equation with Asymptotic Conditions on the Potential. Journal of Mathematical Analysis and Applications, 437, 241-254.
https://doi.org/10.1016/j.jmaa.2015.11.071
[6]  Alves, C.O. and de Morais Filho, D.C. (2018) Existence and Concentration of Positive Solutions for a Schr?dinger Logarithmic Equation. Zeitschrift Angewandte Mathematik und Physik, 69, 144.
https://doi.org/10.1007/s00033-018-1038-2
[7]  Alves, C.O., de Morais Filho, D.C. and Figueiredo, G.M. (2019) On Concentration of Solution to a Schr?dinger Logarithmic Equation with Deepening Potential Well. Mathematical Methods in the Applied Sciences, 42, 4862-4875.
https://doi.org/10.1002/mma.5699
[8]  Willem, M. (1996) Minimax Theorems. Birkh?user, Boston.
https://doi.org/10.1007/978-1-4612-4146-1
[9]  Avenia, P.D., Montefusco, D. and Squassina, M. (2014) On the Logarithmic Schr?dinger Equation. Communications in Contemporary Mathematics, 16, Article ID: 1350032.
https://doi.org/10.1142/S0219199713500326
[10]  Campa, I. and Degiovanni, M. (2000) Subdifferential Calculus and Nonsmooth Critical Point Theory. SIAM Journal on Optimization, 10, 1020-1048.
https://doi.org/10.1137/S1052623499353169
[11]  Degiovanni, M. and Zani, S. (2000) Multiple Solutions of Semilinear Elliptic Equations with One-Sided Growth Conditions. Mathematical and Computer Modelling, 32, 1377-1393.
https://doi.org/10.1016/S0895-7177(00)00211-9
[12]  Pellacci, B. and Squassina, M. (2004) Un-bounded Critical Points for a Class of Lower Semicontinuous Functionals. Journal of Differential Equations, 201, 25-62.
https://doi.org/10.1016/j.jde.2004.03.002

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133