全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of the Instrument Slit Function on Upwelling Radiance from a Wavelength Dependent Surface Reflectance

DOI: 10.4236/ns.2022.143013, PP. 133-147

Keywords: Radiance Enhancement, Upwelling Radiance, Line-by-Line Computation, Radiative Transfer Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Radiance Enhancement (RE) method was introduced for efficient detection of clouds from the space. Recently, we have also reported that due to high reflectance of combustion-originated smokes, this approach can also be generalized for detection of the forest fires by retrieving and analyzing datasets collected from a space orbiting micro-spectrometer operating in the near infrared spectral range. In our previous publication, we have performed a comparison of observed and synthetic radiance spectra by developing a method for computation of surface reflectance consisting of different canopies by weighted sum based on their areal coverage. However, this approach should be justified by a method based on corresponding proportions of the upwelling radiance. The results of computations we performed in this study reveal a good match between areal coverage of canopies and the corresponding proportions of the upwelling radiance due to effect of the instrument slit function.

References

[1]  Buchwitz, M., Rozanov, V.V. and Burrows, J.P. (2000) A Near-Infrared Optimized DOAS Method for the Fast Global Retrieval of Atmospheric CH4, CO, CO2, H2O, and N2O Total Column Amounts from SCIAMACHY Envisat-1 Nadir Radiances. Journal of Geophysical Research, 105, 15231-15245.
https://doi.org/10.1029/2000JD900191
[2]  Buchwitz, M., de Beek, R., Burrows, J.P., Bovensmann, H., Warneke, T., Notholt, J., Meirink, J.F., Goede, A.P.H., Bergamaschi, P., Körner, S., Heimann M. and Schulz, A. (2005) Atmospheric Methane and Carbon Dioxide from SCIAMACHY Satellite Data: Initial Comparison with Chemistry and Transport Models. Atmospheric Chemistry and Physics, 5, 941-962.
https://doi.org/10.5194/acp-5-941-2005
[3]  Buchwitz, M., de Beek, R., Noel, S., Burrows, J.P., Bovensmann, H., Bremer, H., Bergamaschi, P., Körner S. and Heimann, M. (2005) Carbon Monoxide, Methane and Carbon Dioxide Columns Retrieved from SCIAMACHY by WFM-DOAS: Year 2003 Initial Data Set. Atmospheric Chemistry and Physics, 5, 3313-3329.
https://doi.org/10.5194/acp-5-3313-2005
[4]  Bösch, H., Toon, G.C., Sen, B., Washenfelder, R.A., Wennberg, P.O., Buchwitz, M., de Beek, R., Burrows, J.P., Crisp, D., Christi, M., Connor, B.J., Natraj, V. and Yung, Y.L. (2006) Space-Based Near-Infrared CO2 Measurements: Testing the Orbiting Carbon Observatory Retrieval Algorithm and Validation Concept Using SCIAMACHY Observations over Park Falls, Wisconsin. Journal of Geophysical Research, 111, D23302.
https://doi.org/10.1029/2006JD007080
[5]  Jagpal, R.K., Quine, B.M., Chesser, H., Abrarov S. and Lee, R. (2010) Calibration and In-Orbit Performance of the Argus 1000 Spectrometer—The Canadian Pollution Monitor. Journal of Applied Remote Sensing, 4, Article ID: 049501.
https://doi.org/10.1117/1.3302405
[6]  Jagpal, R.K. (2011) Calibration and Validation of Argus 1000 Spectrometer—A Canadian Pollution Monitor. PhD Thesis, York University, Toronto.
https://doi.org/10.1117/1.3302405
[7]  Christopher S.A. and Gupta, P. (2010) Satellite Remote Sensing of Particulate Matter Air Quality: The Cloud-Cover Problem. Journal of the Air & Waste Management Association, 40, 5880-5892.
https://doi.org/10.3155/1047-3289.60.5.596
[8]  Jagpal, R.K., Siddiqui, R., Abrarov, S.M. and Quine, B.M. (2019) Carbon Dioxide Retrieval of Argus 1000 Space Data by Using GENSPECT Line-by-Line Radiative Transfer Model. Environment and Natural Resources Research, 9, 77-85.
https://doi.org/10.5539/enrr.v9n3p77
[9]  Siddiqui, R., Jagpal, J., Salem, N.A. and Quine, B.M. (2015) Classification of Cloud Scenes by Argus Spectral Data. International Journal of Space Science and Engineering, 3, 295-311.
https://doi.org/10.1504/IJSPACESE.2015.075911
[10]  Siddiqui, R., Jagpal, R.K. and Quine, B.M. (2017) Short Wave Upwelling Radiative Flux (SWupRF) within Near Infrared (NIR) Wavelength Bands of O2, H2O, CO2 and CH4 by Argus 1000 Along with GENSPECT Line-Byline Radiative Transfer Model. Canadian Journal of Remote Sensing, 43, 330-344.
https://doi.org/10.1080/07038992.2017.1346467
[11]  Siddiqui, R. (2017) Efficient Detection of Cloud Scenes by a Space-Orbiting Argus 1000 Micro-Spectrometer. PhD Thesis, York University, Toronto.
[12]  Siddiqui, R., Jagpal, R.K. and Abrarov, S.M. and Quine, B.M. (2020) Radiance Enhancement and Shortwave Upwelling Radiative Flux Methods for Efficient Detection of Cloud Scenes. International Journal of Space Science and Engineering, 6, 1-27.
https://doi.org/10.1504/IJSPACESE.2020.109745
[13]  Siddiqui, R. and Jagpal, R.K., Abrarov, S.M. and Quine, B.M. (2020) A New Approach to Detect Combustion-Originated Aerosols by Using a Cloud Method. AGU Fall Meeting 2020, 1-17 December 2020.
[14]  Siddiqui, R., Jagpal, R.K., Abrarov, S.M. and Quine, B.M. (2021) Efficient Application of the Radiance Enhancement Method for Detection of the Forest Fires due to Combustion-Originated Reflectance. Journal of Environmental Protection, 12, 717-733.
https://doi.org/10.4236/jep.2021.1210043
[15]  Quine, B.M. and Drummond, J.R. (2002) GENSPECT: A Line-by-Line Code with Selectable Interpolation Error Tolerance. Journal of Quantitative Spectroscopy & Radiative Transfer, 74, 147-165.
https://doi.org/10.1016/S0022-4073(01)00193-5
[16]  Rankin, D., Kekez, D.D., Zee, R.E., Pranajaya, F.M., Foisy D.G. and Beattie, A.M. (2005) The CanX-2 Nanosatellite: Expanding the Science Abilities of Nanosatellites. Acta Astronautica, 57, 167-174.
https://doi.org/10.1016/j.actaastro.2005.03.032
[17]  Toot, R., Frelich, L.E., Butler, E.E. and Peter, B. (2020) Reich Climate-Biome Envelope Shifts Create Enormous Challenges and Novel Opportunities for Conservation. Forests, 11, 1015.
https://doi.org/10.3390/f11091015
[18]  Anderson, R.C. (2006) Evolution and Origin of the Central Grassland of North America: Climate, Fire, and Mammalian Grazers. The Journal of the Torrey Botanical Society, 133, 626-647.
https://doi.org/10.3159/1095-5674(2006)133[626:EAOOTC]2.0.CO;2
[19]  Roberts, Y.L., Pilewskie, P., Kindel, B.C., Feldman, D.R. and Collins, W.D. (2013) Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance. Atmospheric Chemistry and Physics, 13, 3133-3147.
https://doi.org/10.5194/acp-13-3133-2013
[20]  Li, S., Suna, D., Goldberg, M.D., Sjoberg, B., Santek, D., Hoffman, J.P., DeWeese, M., Restrepo, P., Lindsey, S. and Holloway, E. (2018) Automatic near Realtime Flood Detection Using Suomi-NPP/VIIRS Data. Remote Sensing of Environment, 204, 672-689.
https://doi.org/10.1016/j.rse.2017.09.032
[21]  MODIS Land.
https://modis-land.gsfc.nasa.gov
[22]  Baldridge, A.M., Hook, S.J., Grove, C.I. and Rivera, R. (2009) The ASTER Spectral Library Version 2.0. Remote Sensing of Environment, 113, 711-715.
https://doi.org/10.1016/j.rse.2008.11.007
[23]  Dick, M., Porter, T.J., Pisaric, M.F.J., Wertheimer, è., de Montigny, P., Perreault, J.T. and Robillard, K.-L. (2014) A Multi-Century Eastern White Pine Tree-Ring Chronology Developed from Salvaged River Logs and Its Utility for Dating Heritage Structures in Canada’s National Capital Region. Dendrochronologia, 32, 120-126.
https://doi.org/10.1016/j.dendro.2014.02.001
[24]  Apadula, F., Cassardo, C., Ferrarese, S., Heltai, D. and Lanza, A. (2019) Thirty Years of Atmospheric CO2 Observations at the Plateau Rosa Station, Italy. Atmosphere, 10, 418.
https://doi.org/10.3390/atmos10070418
[25]  Karnauskas, K.B., Miller, S.L. and Schapiro, A.C. (2020) Fossil Fuel Combustion Is Driving Indoor CO2 toward Levels Harmful to Human Cognition. Geo-Health, 4, e2019GH000237.
https://doi.org/10.1029/2019GH000237
[26]  Davidson, C.J., Foster, K.R. and Tanna, R.N. (2020) Forest Health Effects Due to Atmospheric Deposition: Findings from Long-Term Forest Health Monitoring in the Athabasca Oil Sands Region. Science of the Total Environment, 699, Article ID: 134277.
https://doi.org/10.1016/j.scitotenv.2019.134277
[27]  Tymstra, C., Stocks, B.J., Cai, X. and Flannigan, M.D. (2020) Wildfire Management in Canada: Review, Challenges and Opportunities. Progress in Disaster Science, 5, Article ID: 100045.
https://doi.org/10.1016/j.pdisas.2019.100045
[28]  Axelson, J.N., Alfaro, R.I. and Hawkes, B.C. (2009) Influence of Fire and Mountain Pine Beetle on the Dynamics of Lodgepole Pine Stands in British Columbia, Canada. Forest Ecology and Management, 257, 1874-1882.
https://doi.org/10.1016/j.foreco.2009.01.047
[29]  Benali, A., Russo, A., Sà, A.C.L., Pinto, R.M.S., Price, O., Koutsias, N. and Pereira, J.M.C. (2016) Determining Fire Dates and Locating Ignition Points with Satellite Data. Remote Sensing, 8, 326.
https://doi.org/10.3390/rs8040326
[30]  Google Earth.
https://www.google.com/earth
[31]  Hill, C., Gordon, I.E., Kochanov, R.V., Barrett, L., Wilzewski, J.S. and Rothman, L.S. (2016) HITRANonline: An Online Interface and the Flexible Representation of Spectroscopic Data in the HITRAN Database. Journal of Quantitative Spectroscopy & Radiative Transfer, 177, 4-14.
https://doi.org/10.1016/j.jqsrt.2015.12.012
[32]  Abrarov, S.M., Quine, B.M., Siddiqui, R. and Jagpal, R.K. (2019) A Single-Domain Implementation of the Voigt/Complex Error Function by Vectorized Interpolation. Earth Science Research, 8, 52-63.
https://doi.org/10.5539/esr.v8n2p52
[33]  Abrarov, S.M. and Quine, B.M. (2011) Efficient Algorithmic Implementation of the Voigt/Complex Error Function Based on Exponential Series Approximation. Applied Mathematics and Computation, 218, 1894-1902.
https://doi.org/10.1016/j.amc.2011.06.072
[34]  Abrarov, S.M., Quine, B.M. and Jagpal, R.K. (2018) A Sampling-Based Approximation of the Complex Error Function and Its Implementation without Poles. Applied Numerical Mathematics, 129, 181-191.
https://doi.org/10.1016/j.apnum.2018.03.009
[35]  Abrarov, S.M. and Quine, B.M. (2018) A Rational Approximation of the Dawson’s Integral for Efficient Computation of the Complex Error Function. Applied Mathematics and Computation, 321, 526-543.
https://doi.org/10.1016/j.amc.2017.10.032
[36]  Fomin, B.A. (1995) Effective Interpolation Technique for Line-by-Line Calculations of Radiation Absorption in Gases. Journal of Quantitative Spectroscopy & Radiative Transfer, 53, 663-669.
https://doi.org/10.1016/0022-4073(95)00029-K
[37]  Sparks, L. (1997) Efficient Line-by-Line Calculation of Absorption Coefficients to High Numerical Accuracy. Journal of Quantitative Spectroscopy & Radiative Transfer, 57, 631-650.
https://doi.org/10.1016/S0022-4073(96)00154-9
[38]  Beirle, S., Lampel, J., Lerot, C., Sihler, H. and Wagner, T. (2017) Parameterizing the Instrumental Spectral Response Function and Its Changes by a Super-Gaussian and Its Derivatives. Atmospheric Measurement Techniques, 10, 581-598.
https://doi.org/10.5194/amt-10-581-2017
[39]  Galan, L.D. and Winefordner, J.D. (1968) Slit Function Effects in Atomic Spectroscopy. Spectrochemica Acta B, 23, 277-289.
https://doi.org/10.1016/0584-8547(68)80007-2
[40]  Röseler, A. (1966) Measurements of the Instrument Function and of the Spectral Slit width of a Prism Spectrometer. Infrared Physics, 6, 111-122.
https://doi.org/10.1016/0020-0891(66)90005-4
[41]  Edwards, D.P. (1992) GENLN2: A General Line-by-Line Atmospheric Transmittance and Radiance Model, Version 3.0 Description and Users Guide. NCAR/TN-367-STR, National Center for Atmospheric Research, Boulder.
[42]  Liou, K.N. (2002) An Introduction to Atmospheric Radiation. 2nd Edition, Academic Press, Cambridge.
[43]  Edwards, D.P. (1987) GENLN2: The New Oxford Line-by-Line Atmospheric Transmission/Radiance Model. Dept. of Atmospheric, Oceanic and Planetary Physics, Memorandum 87.2, University of Oxford, Oxford.
[44]  Edwards, D.P. (1988) Atmospheric Transmittance and Radiance Calculations Using Line-by-Line Computer Models. Proceedings, Modeling of the Atmosphere, 1988 Technical Symposium on Optics, Electro-Optics, and Sensors, Orlando, Volume 928, 94-116.
https://doi.org/10.1117/12.975622
[45]  Nordebo, S. (2021) Uniform Error Bounds for Fast Calculation of Approximate Voigt Profiles. Journal of Quantitative Spectroscopy & Radiative Transfer, 270, Article ID: 107715.
https://doi.org/10.1016/j.jqsrt.2021.107715
[46]  Jallad, A.-H., Marpu, P., Aziz, Z.A., Marar, A.A. and Awad, M. (2019) MeznSat—A 3U Cubesat for Monitoring Greenhouse Gases Using Short Wave Infrared Spectrometry: Mission Concept and Analysis. Aerospace, 6, 118.
https://doi.org/10.3390/aerospace6110118

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413