全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非视距水下无线光通信传输信道脉冲响应特性研究
Research on Impulse Response Characteristics of Underwater NLOS Wireless Optical Communication Transmission Channels

DOI: 10.12677/HJWC.2022.121001, PP. 1-11

Keywords: 非视距,水下无线光通信,多次散射,蒙特卡罗模拟,脉冲展宽
Non Line of Sight
, Underwater Wireless Optical Communication, Multiple Scattering, Monte Carlo Simulation, Impulse Response

Full-Text   Cite this paper   Add to My Lib

Abstract:

非视距水下无线光通信利用光散射进行传输,可以缓解视距水下无线光通信对准的要求。脉冲响应可以很好的反映水下无线光通信系统的信道性能。本文提出了一种基于指向概率法改进的非视距水下无线光通信传输信道模型,基于此模型模拟了不同海水环境、不同收发机距离、不同波长对脉冲展宽的影响。仿真结果表明脉冲展宽效应随光波长的增大、海水浑浊度的减小、传输距离的减小而减小。文中所提出的非视距传输模型为水下非视距无线光通信传输信道特征描述提供了一种足够准确和现实的方法,对分析和开发有效的水下无线光通信系统具有一定参考价值。
Non-line-of-sight underwater wireless optical communication uses light scattering for transmission, which can alleviate the alignment requirements of line-of-sight underwater wireless optical communication. The impulse response can well reflect the channel performance of the underwater wireless optical communication system. In this paper, an improved non-line-of-sight underwater wireless optical communication transmission channel model based on the pointing probability method is proposed. Based on this model, the effects of different seawater environments, different transceiver distances, and different wavelengths on impulse response are simulated. The simulation results show that the pulse broadening effect decreases with the increase of light wavelength, seawater turbidity, and transmission distance. The proposed non-line-of-sight transmission model provides an accurate and realistic method for channel feature description of underwater non-line-of-sight wireless optical communication, which has a certain reference value for analyzing and developing an effective underwater wireless optical communication system.

References

[1]  Zia, M.Y.I., Otero, P., Siddiqui, A. and Poncela, J. (2021) Design of a Web Based Underwater Acoustic Communication Testbed and Simulation Platform. Wireless Personal Communications, 116, 1171-1193.
https://doi.org/10.1007/s11277-020-07203-7
[2]  Zaneveld, J.R.V. (1995) Light and Water: Radiative Transfer in Natural Waters. Academic Press, San Diego.
[3]  Singh, M., Singh,, M.L., Singh, G., Kaur, H., Priyanka and Kaur, S. (2021) Real-Time Image Transmission through Underwater Wireless Optical Communication Link for Internet of Underwater Things. International Journal of Communication Systems, 34, Article No. e4951.
https://doi.org/10.1002/dac.4951
[4]  Lin, R., Liu, X, Zhou, G., Qian, Z., Cui, X. and Tian, P. (2021) InGaN Micro-LED Array Enabled Advanced Underwater Wireless Optical Communication and Underwater Charging. Advanced Optical Materials, 9, Article ID: 2002211.
https://doi.org/10.1002/adom.202002211
[5]  He, G., Lv, Z., Qiu, C. and Liu, Z. (2021) P-4.11: The Effects of Oceanic Turbulence in the 520 nm Laser Diode Underwater Wireless Optical Communication System. SID Symposium Digest of Technical Papers, 52, 514-515.
https://doi.org/10.1002/sdtp.14539
[6]  Adnan, S.A., Ahmed, H., Alchalaby, A. and Kadhim, A.C. (2021) Experimental Study of Underwater Wireless Optical Communication from Clean Water to Turbid Harbor under Various Conditions. International Journal of Design & Nature and Ecodynamics, 16, 219-226.
https://doi.org/10.18280/ijdne.160212
[7]  Vali, Z., Gholami, A., Ghassemlooy, Z., Michelson, D.G., Omoomi, M. and Noori, H. (2017) Modeling Turbulence in Underwater Wireless Optical Communications Based on Monte Carlo Simulation. Journal of the Optical Society of America A, 34, 1187-1193.
https://doi.org/10.1364/JOSAA.34.001187
[8]  Sait, M., Sun, X., Alkhazragi, O., Alfaraj, N., Kong, M., Ng, T.K., et al. (2019) The Effect of Turbulence on NLOS Underwater Wireless Optical Communication Channels [Invited]. Chinese Optics Letters, 17, Article ID: 100013.
https://doi.org/10.3788/COL201917.100013
[9]  Tang, S., Dong, Y. and Zhang, X. (2013) On Path Loss of NLOS Underwater Wireless Optical Communication Links. 2013 MTS/IEEE OCEANS-Bergen, Bergen, 10-14 June 2013, 1-3.
https://doi.org/10.1109/OCEANS-Bergen.2013.6608002
[10]  Choudhary, A., Jagadeesh, V.K. and Muthuchidambaranathan, P. (2014) Pathloss Analysis of NLOS Underwater Wireless Optical Communication Channel. 2014 International Conference on Electronics and Communication Systems (ICECS). Coimbatore, 13-14 February 2014, 1-4.
https://doi.org/10.1109/ECS.2014.6892620
[11]  Arnon, S. and Kedar, D. (2009) Non-Line-of-Sight Underwater Optical Wireless Communication Network. Journal of the Optical Society of America A, 26, 530-539.
https://doi.org/10.1364/JOSAA.26.000530
[12]  He, G., Lv, Z., Qiu, C. and Liu, Z. (2021) 21.3: The Influence of NLOS on Underwater Wireless Optical Communication System Using an InGaN-Based Micro-LED and NRZ-OOK Modulation. SID Symposium Digest of Technical Papers, 52, 286-288.
https://doi.org/10.1002/sdtp.15095
[13]  Jagadeesh, V.K., Naveen, K.V., Muthuchidambaranathan, P. (2015) BER Performance of NLOS Underwater Wireless Optical Communication with Multiple Scattering. International Journal of Electronics and Communication Engineering, 9, 563-566.
[14]  Sun, X., Cai, W., Alkhazragi, O., Ooi, E.-N., He, H., Chaaban, A., et al. (2018) 375-nm Ultraviolet-Laser Based Non- Line-of-Sight Underwater Optical Communication. Optics Express, 26, 12870-12877.
https://doi.org/10.1364/OE.26.012870
[15]  Sun, X., Kong, M., Alkhazragi, O., Ooi, E.-N., Zhang, X., Buttner, U., et al. (2020) Non-Line-of-Sight Methodology for High-Speed Wireless Optical Communication in Highly Turbid Water. Optics Communications, 461, Article ID: 125264.
https://doi.org/10.1016/j.optcom.2020.125264
[16]  Haltrin, V.I. (1999) Chlorophyll-Based Model of Seawater Optical Properties. Applied Optics, 38, 6826-6832.
https://doi.org/10.1364/AO.38.006826
[17]  肖后飞. 紫外光通信系统传输模型研究[D]: [博士学位论文]. 北京: 北京邮电大学, 2014.
[18]  宋鹏. 无线紫外光移动自组网信道传输特性研究[D]: [硕士学位论文]. 西安: 西安理工大学, 2017.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413