全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ANSYS的航空发动机外部管路振动仿真分析
Vibration Simulation Analysis on Aeroengine External Pipelines Based on ANSYS

DOI: 10.12677/OJAV.2022.101001, PP. 1-8

Keywords: 航空发动机,外部管路,模态分析,振动响应
Aero-Engine
, External Pipeline, Modal Analysis, Vibration Response

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于ANSYS Workbench对航空发动机外部管路进行仿真分析。针对直管型管路、90?型管路、S型管路、Ω型管路及其不同壁厚,对管路固有频率、模态以及振动响应进行了分析。仿真分析结果表明,随着管路壁厚的增加,管路的固有频率也逐渐增加。直管型管路、S型管路、Ω型管路振动响应较小,90?型管路振动响应较大。分析结果为航空发动机外部管路优化设计提供了一定的依据。
The external pipelines of aeroengine were analyzed based on ANSYS Workbench. The natural frequency, mode and vibration response of straight pipes, 90? pipes, s-pipes, Ω pipes with different thickness were analyzed. The simulation results show the natural frequency of the pipelines increase with the thickness of the pipelines. The vibration responses amplitude of straight pipeline, s-pipes and Ω pipes are smaller, but the vibration responses of 90? pipelines are larger. This simulation results provide a bit of basis for the design and optimization of aeroengine external pipelines.

References

[1]  Olson, L.G. and Jamison, D. (1997) Application of a General Purpose Finite Element Method to Elastic Pipes Conveying Fluid. Journal of Fluids and Structures, 11, 207-222.
https://doi.org/10.1006/jfls.1996.0073
[2]  Mamaghani, A.E. and Khadlem, S.E. (2016) Vibration Control of a Pipeconveying Fluid under External Periodic Excitation Using a Non-linear Energy Sink. Nonlinear Dynamics, 86, 1761-1795.
https://doi.org/10.1007/s11071-016-2992-x
[3]  卢丽金, 黄超广, 沈祖辉. 飞机液压/燃油管路系统振动故障模式、机制及排除方法[C]//中国振动工程学会. 中国航空结构动力学专业组第十六届学术交流会论文集. 西安: 振动工程学报出版社, 2008: 88-92.
[4]  李占营, 王建军, 邱明星. 航空发动机管路流固耦合振动的固有频率分析[J]. 航空发动机, 2017, 43(1): 66-70.
[5]  王世忠, 王茹. 三维管道固液耦合振动分析[J]. 哈尔滨工业大学学报, 1992(4): 43-49.
[6]  邱明星, 陈志英, 王建军, 刘中华, 赵伟志. 充液管路固有频率试验与计算分析[J]. 推进技术, 2013, 34(11): 1537-1542.
[7]  贾志刚, 陈志英. 航空发动机管路调频方法研究[J]. 装备制造技术, 2008(1): 18-20.
[8]  康力, 洪杰, 徐雷, 赵凯, 张大义. 航空发动机外部管路的振动响应分析[J]. 航空发动机, 2015, 41(2): 50-54.
[9]  Zhou, Q. and Lyu, Y. (2020) Research Based on Lee Algorithm and Genetic Algorithm of the Automatic External Pipe Routing of the Aircraft Engine. International Journal of Mechanical Engineering and Applica-tions, 8, 40-44.
https://doi.org/10.11648/j.ijmea.20200801.16
[10]  Gholami, H., Shahrooi, S. and Shishehsaz, M. (2021) Strain-Based Fatigue Life Analysis of Pipelines with External Defects under Cyclic Internal Pressure. The Journal of Strain Analysis for Engineering Design, 56, 313-326.
https://doi.org/10.1177/0309324720957569
[11]  徐培原, 刘伟. 发动机外部管路系统的卡箍布局多目标优化[J]. 航空发动机, 2020, 46(6): 46-52.
https://doi.org/10.13477/j.cnki.aeroengine.2020.06.009
[12]  刘玉柱, 刘学文, 许绝舞, 杨静思. 某航空液压管道振动异常故障研究[J]. 航空维修与工程, 2021(6): 57-60.
[13]  于瀛. 基于ANSYS Workbench的管道系统流固耦合振动特性分析[D]: [硕士学位论文]. 沈阳: 东北大学, 2016.
[14]  喻靖宇, 顾伟伟, 吕骁翼, 张润忤, 刘树林. 海底管道固有频率影响因素分析[J]. 机械制造, 2015, 53(5): 11-15.
[15]  王煜, 李书明, 黄燕晓. 航空发动机液压管路振动特性分析[J]. 机械设计, 2019, 36(S1): 129-131.
[16]  潘柏霖. 航空发动机外部管路特性与系统动力学参数研究[J]. 内燃机与配件, 2018(6): 6-7.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413