全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

银纳米颗粒增强CsPbIBr2钙钛矿光伏器件的模拟研究
Simulation Study of Silver Nanoparticles Enhanced CsPbIBr2 Perovskite Photovoltaic Devices

DOI: 10.12677/OE.2022.121002, PP. 14-23

Keywords: 银纳米颗粒,局域表面等离激元,时域有限差分法,CsPbIBr2钙钛矿太阳能电池
Ag Nanoparticle
, Local Surface Plasmons, Finite Difference Time Domain Method, CsPbIBr2 Perovskite Solar Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

在入射光的激发下,银纳米颗粒(Ag NPs)表面发生的局域表面等离激元共振效应具有近场增强的作用,这种效应有望增强对CsPbIBr2钙钛矿材料的激发态密度从而提高光伏器件的光电转换效率。另外,Ag NPs的前向散射会提高入射光的光程,有助于提高光吸收。基于此,本文设计了基于Ag NPs的局域表面等离激元增强型CsPbIBr2钙钛矿光伏器件,利用Ag NPs改善结构为FTO/ZnO/CsPbIBr2/Carbon的CsPbIBr2光伏器件的性能。我们利用时域有限差分法对基于Ag NPs的局域表面等离激元增强型CsPbIBr2钙钛矿光伏器件结构进行了相关的数值模拟,通过调控模型中FTO衬底表面上Ag NPs的间隔尺寸得到了具有不同Ag NPs表面覆盖比的CsPbIBr2钙钛矿光伏器件,进而模拟得到器件的吸收率以及各光伏器件剖面的电场分布情况。模拟结果表明,Ag NPs的局域表面等离激元增强效应以及前向散射效应有望改善CsPbIBr2钙钛矿光伏器件的性能,在理论上预言了本文设计的可行性,也为实验制备高效CsPbIBr2光伏器件提供了一定的理论指导。
Under the action of incident light, local surface plasmon resonance (LSPR) would appear around the surface of Ag Nano particles (NPs), and LSPR has the effect of near-field enhancement. In addition, Ag NPs possess the forward scattering effect to the incident light, which can also improve the performance of CsPbIBr2-based PSCs to some extent. Considering that these effects are expected to improve the performance of CsPbIBr2 photovoltaic devices, Ag NPs are designed and prepared for LSP-enhanced CsPbIBr2 photovoltaic devices. The specific design of this paper is to use Ag NPs for enhancing the performance of CsPbIBr2 photovoltaic devices with the basic structure of FTO/ZnO/CsPbIBr2/Carbon. And then, the finite difference time domain (FDTD) method is employed to simulate the structure of the designed solar cell devices. The device models with different Ag NPs surface coverage ratio (SC) are obtained by controlling the interval size of Ag NPs on the FTO substrate surface. The simulated absorptivity and also the simulated electric field distribution of each cross section are obtained. By analyzing the simulation results, the feasibility of the design in this paper is verified theoretically, which also provides guidance for the subsequent experiments of CsPbIBr2 perovskite solar cell.

References

[1]  Qin, M., Xue, H., Zhang, H., Hu, H., Liu, K., Li, Y., et al. (2020) Precise Control of Perovskite Crystallization Kinetics via Sequential a-Site Doping. Advanced Materials, 32, Article ID: 2004630.
https://doi.org/10.1002/adma.202004630
[2]  Cheng, Y.H., So, F. and Tsang, S.W. (2019) Progress in Air-Processed Perovskite Solar Cells: From Crystallization to Photovoltaic Performance. Materials Horizons, 6, 1611-1624.
https://doi.org/10.1039/C9MH00325H
[3]  Kojima, A., Teshima, K., Shirai, Y., et al. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
[4]  Correa-Baena, J.P., Abate, A., Saliba, M., et al. (2017) The Rapid Evolution of Highly Efficient Perovskite Solar Cells. Energy & Environmental Science, 10, 710-727.
https://doi.org/10.1039/C6EE03397K
[5]  Wu, T., Qin, Z., Wang, Y., et al. (2021) The Main Progress of Perovskite Solar Cells in 2020-2021. Nano-Micro Letters, 13, 18.
https://doi.org/10.1007/s40820-021-00672-w
[6]  Ma, Q., Huang, S., Wen, X., et al. (2016) Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation. Advanced Energy Materials, 6, Article ID: 1502202.
https://doi.org/10.1002/aenm.201502202
[7]  Aamir, M., Adhikari, T., Sher, M., et al. (2018) Fabrication of Planar Heterojunction CsPbBr2I Perovskite Solar Cells Using ZnO as an Electron Transport Layer and Improved Solar Energy Conversion Efficiency. New Journal of Chemistry, 42, 14104-14110.
https://doi.org/10.1039/C8NJ02238K
[8]  Zhang, Q., Zhu, W., Chen, D., et al. (2019) Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr2 Solar Cells with High Photovoltages. Acs Applied Materials & Interfaces, 11, 2997-3005.
https://doi.org/10.1021/acsami.8b17839
[9]  Zhu, W., Zhang, Q., Chen, D., et al. (2018) Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-Inorganic Planar CsPbIBr2 Perovskite Solar Cells to over 9%. Advanced Energy Materials, 8, Article ID: 1802080.
https://doi.org/10.1002/aenm.201802080
[10]  Du, J., Duan, J., Yang, X., et al. (2021) p-Type Charge Transfer Doping of Graphene Oxide with (NiCo)(1?y)FeyOx for Air-Stable, All-Inorganic CsPbIBr2 Perovskite Solar Cells. Angewandte Chemie-International Edition, 60, 10608-10613.
https://doi.org/10.1002/anie.202016703
[11]  Lu, L., Tan, R., Chen, D., et al. (2019) Surface Plasmon Assisted Laser Ablation of Stainless Steel. Nanotechnology, 30, Article ID: 305401.
https://doi.org/10.1088/1361-6528/ab1806
[12]  Cheng, Y., Chen, C., Chen, X., et al. (2017) Considerably Enhanced Perovskite Solar Cells via the Introduction of Metallic Nanostructures. Journal of Materials Chemistry A, 5, 6515-6521.
https://doi.org/10.1039/C6TA10715J
[13]  Wang, J.-Y., Hsu, F.-C., Huang, J.-Y., et al. (2015) Bifunctional Polymer Nanocomposites as Hole-Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells. Acs Applied Materials & Interfaces, 7, 27676-27684.
https://doi.org/10.1021/acsami.5b08157
[14]  Lee, D.S., Kim, W., Cha, B.G., et al. (2016) Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution. Acs Applied Materials & Interfaces, 8, 449-454.
https://doi.org/10.1021/acsami.5b09365
[15]  Cui, J., Chen, C., Han, J., et al. (2016) Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells. Advanced Science, 3, Article ID: 1500312.
https://doi.org/10.1002/advs.201500312
[16]  Zhang, W., Saliba, M., Stranks, S.D., et al. (2013) Enhancement of Perovskite-Based Solar Cells Employing Core-Shell Metal Nanoparticles. Nano Letters, 13, 4505-4510.
https://doi.org/10.1021/nl4024287
[17]  Spinelli, P., Hebbink, M., De Waele, R., et al. (2011) Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays. Nano Letters, 11, 1760-1765.
https://doi.org/10.1021/nl200321u
[18]  Mokkapati, S., Beck, F.J., De Waele, R., et al. (2011) Resonant Nano-Antennas for Light Trapping in Plasmonic Solar Cells. Journal of Physics D—Applied Physics, 44, Article ID: 185101.
https://doi.org/10.1088/0022-3727/44/18/185101
[19]  Atwater, H.A. and Polman, A. (2010) Plasmonics for Improved Photovoltaic Devices. Nature Materials, 9, 205-213.
https://doi.org/10.1038/nmat2629
[20]  Mertz, J. (2000) Radiative Absorption, Fluorescence, and Scattering of a Classical Dipole near a Lossless Interface: A Unified Description. Journal of the Optical Society of America B—Optical Physics, 17, 1906-1913.
https://doi.org/10.1364/JOSAB.17.001906
[21]  Chylek, P. (1986) Absorption and Scattering of Light by Small Particles. Applied Optics, 25, 3166.
[22]  Im, J.H., Kim, H.S. and Park, N.G. (2014) Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-Step versus Two-Step Deposition of CH3NH3PbI3. APL Materials, 2, Article ID: 081510.
https://doi.org/10.1063/1.4891275
[23]  Ahmadi, T.S., et al. (1996) Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science (New York, NY), 272, 1924-1926.
https://doi.org/10.1126/science.272.5270.1924
[24]  Jang, T., Youn, H., Shin, Y.J., et al. (2014) Transparent and Flexible Polarization-Independent Microwave Broadband Absorber. Acs Photonics, 1, 279-284.
https://doi.org/10.1021/ph400172u
[25]  Wu, Y., Ren, S., Xu, X., et al. (2014) Engineered Fluorescence of Quantum Dots via Plasmonic Nanostructures. Solar Energy Materials & Solar Cells, 126, 113-119.
https://doi.org/10.1016/j.solmat.2014.03.050
[26]  Liu, L., Zeng, W., Hu, S., et al. (2017) Polarization-Dependent Fluorescence of CdSe/ZnS Quantum Dots Coupling to a Single Gold-Silver Alloy Nanotube. Journal of Alloys and Compounds, 731, 753-759.
https://doi.org/10.1016/j.jallcom.2017.10.053

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133