全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Characterization of Two Clay Raw Materials from C?te d’Ivoire with a View to Enhancing Them in Eco-Construction

DOI: 10.4236/jmmce.2022.102016, PP. 198-208

Keywords: Clays, Compressed Earth Bricks, Eco-Material, Physico-Chemical and Geotechnical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study was carried out with a view to appreciate the value of clay, raw materials in eco-construction. To achieve this, we sampled two clay raw materials denoted Aga and Bak and then characterized. The results obtained from geotechnical and mineralogical tests have shown that the clay samples Aga and Bak are fine soils moderately plastic class A soils consisting essentially of quartz with 73.13% and 74.56% respectively for Aga and Bak and clay minerals (kaolinite and illite) with 12.73% kaolinite and 8.55% illite for Aga against 8.31% kaolinite and 13.72% for Bak. Moreover, these samples do not contain swelling clays and contain a sufficient quantity of iron oxides which allows them to be valued in ceramics, in particular in compressed earth bricks (CEB).

References

[1]  Pacheco-Torgal, F. and Jalali, S. (2012) Earth Construction: Lessons from the Past for Future Eco-Efficient Construction. Construction and Building Materials, 29, 512-519.
https://doi.org/10.1016/j.conbuildmat.2011.10.054
[2]  Taylor, M., Tam, C. and Gielen, D. (2006) Energy Efficiency and CO2 Emissions from the Global Cement Industry. IEA, Paris.
[3]  Kouamé, A.N., Konan, L.K., Doubi Gouré, B.I.H.G., Tognonvi, M.T. and Oyetola, S. (2020) Mechanical and Microstructural Properties of Compressed Earth Bricks (CEB) Incorporating Shea Butter Wastes and Stabilized with Cement. Journal of Materials Physics and Chemistry, 8, 1-8.
[4]  Sawadogo, M., Seynou, M., Zerbo, L., Sorgho, B., Lecomte-Nana, G.L., Blanchart, P. and Ouédraogo, R. (2020) Formulation of Clay Refractory Bricks: Influence of the Nature of Chamotte and the Alumina Content in the Clay. Advances in Materials, 9, 59-67.
https://doi.org/10.11648/j.am.20200904.11
[5]  Laibi, A.B., Gomina, M., Sorgho, B., Sagbo, E., Blanchart, P., Boutouil, M. and Sohounhloule, D.K. (2017) Caractérisation physico-chimique et géotechnique de deux sites argileux du Bénin en vue de leur valorisation dans l’éco-construction. International Journal of Biological and Chemical Science, 11, 499-514.
https://doi.org/10.4314/ijbcs.v11i1.40
[6]  Sorgho, B. (2013) Caractérisation et valorisation de quelques argiles du Burkina Faso: application au traitement des eaux et aux géomatériaux de construction. Thèse de Doctorat, Universite de Ouagadougou, Ouagadougou.
[7]  Association Française de Normalisation (AFNOR) (2001) Blocs de terre comprimée pour murs et cloisons. AFNOR éditions, Norme XP P13-901.
[8]  Doat, P., Hays, A., Houben, H., Matuk, S. and Vitoux, F. (1979) Construire en terre. Editions Alternatives, Paris.
[9]  Guide de Terrassement Routier (GTR) (1992) Guide technique: Réalisation des remblais et des couches de forme. LCPC-SETRA, Paris-Bagneux.
[10]  Doat, P., Hays, A., Houben, H., Matur, S. and Vitoux, F. (1991) Construction en Terre par le CRA Terre. Edition Parenthèses, Marseille.
[11]  Garcia-Valles M., Alfonso P., Martínez, S. and Roca, N. (2020) Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain). Minerals, 10, Article No. 142.
https://doi.org/10.3390/min10020142
[12]  Kouamé, A.N., Konan, L.K. and Goure Doubi, B.I.H. (2021) Microstructure and Mineralogy of Compressed Earth Bricks Incorporating Shea Butter Wastes Stabilized with Cement. Advances in Materials, 10, 67-74.
[13]  Kouakou, L.P.M.S., Andji-Yapi, Y.J. and Coulibaly, Y. (2012) Mineralogy, Geochemistry of Clay Raw Material from Ivory Coast (West Africa) Used as Pharmaceutical Products. Journal Société Ouest-Africaine de Chimie, 34, 38-44.
[14]  Méité, N., Konan, L.K., Tognonvi, M.T., Goure Doubi, B.I.H., Gomina, M. and Oyetola, S. (2021) Properties of Hydric and Biodegradability of Cassava Starch-Based Bioplastics Reinforced with Thermally Modified Kaolin. Carbohydrate Polymers, 254, Article ID: 117322.
https://doi.org/10.1016/j.carbpol.2020.117322
[15]  Ouattara, S. (2013) Recherche de briques légères: Conception et caractérisation de briques crues à base d’argile et de sciure de bois, stabilisées au ciment Portland. Thèse de Doctorat, Université Félix Houphouët Boigny, Abidjan.
[16]  Sei, J., Jumas, J.C., Olivier-Fourcade, J., Quiquampoix, H. and Staunton, S. (2002) Role of Iron Oxides in the Phosphate Adsorption Properties of Kaolinites from the Ivory Coast. Clays and Clay Minerals, 50, 217-222.
https://doi.org/10.1346/000986002760832810
[17]  Brindley, G.W. and Nakahira, M. (1959) The Kaolinite-Mullite Reaction Series: II, Metakaolin. Journal of the American Ceramic Society, 42, 314-318.
https://doi.org/10.1111/j.1151-2916.1959.tb14315.x
[18]  Chen, C.Y., Lan, G.S. and Tuan, W.H. (2000) Microstructural Evolution of Mullite during the Sintering of Kaolin Powder Compacts. Ceramics International, 26, 715-720.
https://doi.org/10.1016/S0272-8842(00)00009-2
[19]  Hu, P. and Yang, H. (2013) Insight into the Physicochemical Aspects of Kaolins with Different Morphologies. Applied Clay Science, 74, 58-65.
https://doi.org/10.1016/j.clay.2012.10.003
[20]  Bich, C., Ambroise, J. and Péra, J. (2009) Influence of Degree of Dehydroxylation on the Pozzolanic Activity of Metakaolin. Applied Clay Science, 44, 194-200.
https://doi.org/10.1016/j.clay.2009.01.014
[21]  White, J.L. (1971) Interpretation of Infrared Spectra of Soil Minerals. Soil Science, 112, 22-31.
https://doi.org/10.1097/00010694-197107000-00005
[22]  Schwertmann, U. and Cornell, R.M. (2008) Iron Oxides in the Laboratory: Preparation and Characterization. Wiley-VCH, New York.
[23]  Konan, K.L. (2006) Interaction entre des matériaux argileux et un milieu basique riche en calcium. Thèse de Doctorat, Université de Limoges, Limoges.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413