全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydrometeorological Modeling of Limpopo River Basin in Mozambique with TOPMODEL and Remote Sensing

DOI: 10.4236/ojmh.2022.122004, PP. 55-73

Keywords: Floods Simulations, Limpopo River, TOPMODEL, CMORPH, IMERG

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Limpopo River basin (LRB) is known for its vulnerability to floods, high rates of evapotranspiration, and droughts that cause significant losses to the local community. The present study aimed to perform simulations of flood events occurring in two Mozambican sub-basins of LRB, namely Chókwè and Xai-Xai from 2000 to 2015 with TOPography-based hydrological MODEL (TOPMODEL) and satellite remote sensing data. As input in TOPMODEL, data from two high-resolution global satellite-based precipitation products: Climate Prediction Center MORPHing technique (CMORPH) and Integrated Multi-Satellite Retrievals for the Global Precipitation Mission (GPM) algorithm (IMERG), 8-day MOD16 evapotranspiration product and surface runoff data estimated by Global Land Data Assimilation System (GLDAS) were used. The sensitivity tests of TOPMODEL parameters were applied using the Monte Carlo simulation. Calibration and validation of the model were performed by the Shuffled Complex Evolution (SCE-UA) method and were evaluated with the Kling-Gupta Efficiency (KGE) index. The results indicated that simulations with the GPM-IMERG (KGE: 0.59 and 0.65) tended to underestimate the stream flows, while with the CMORPH product the performance was much better (KGE: 0.66 and 0.77) in both sub-basins. Thus, TOPMODEL can help to develop flood monitoring systems from satellite remotely sensed data in similar regions of Mozambique.

References

[1]  Ingc, U. and Fews, N.M. (2003) Atlas for Disaster Preparedness and Response in the Limpopo Basin. Creda Communications Ltd., Cape Town, 100 p.
[2]  Shaviraachin, T. (2005) Flood Simulation: A Case Study in the Lower Limpopo Valley, Mozambique Using the SOBEK Flood Model. Doctoral Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede.
[3]  Asante, K.O., Macuacua, R.D., Artan, G.A., Lietzow, R.W. and Verdin, J.P. (2007) Developing a Flood Monitoring System from Remotely Sensed Data for the Limpopo Basin. IEEE Transactions on Geoscience and Remote Sensing, 45, 1709-1714.
https://doi.org/10.1109/TGRS.2006.883147
[4]  Asante, K., Brito, R., Brundrit, G., Epstein, P., Nussbaumer, P. and Patt, A. (2009) Study on the Impact of Climate Change on Disaster Risk in Mozambique. INGC Synthesis Report on Climate Change—First Draft, National Institute for Disaster Management, Maputo.
http://pure.iiasa.ac.at/9007
[5]  Mavume, A.F., Rydberg, L., Rouault, M. and Lutjeharms, J.R. (2009) Climatology and Landfall of Tropical Cyclones in the South-West Indian Ocean. Western Indian Ocean Journal of Marine Science, 8, 15-36.
https://doi.org/10.4314/wiojms.v8i1.56672
[6]  WMO (2012) Limpopo River Basin: A Proposal to Improve the Flood Forecasting and Early Warning Systems. World Meteorological Organization, Geneva.
[7]  Chilundo, M. and Kelderman, P. (2008) Design of a Water Quality Monitoring Network for the Limpopo River Basin in Mozambique. Physics and Chemistry of the Earth, Parts A/B/C, 33, 655-665.
https://doi.org/10.1016/j.pce.2008.06.055
[8]  Sitoe, S.R., Risberg, J., Norström, E., Snowball, I., Holmgren, K., Achimo, M. and Mugabe, J. (2015) Paleo-Environment and Flooding of the Limpopo River-Plain, Mozambique, between c. AD 1200-2000. CATENA, 126, 105-116.
https://doi.org/10.1016/j.catena.2014.10.038
[9]  Zhu, T. and Ringler, C. (2012) Climate Change Impacts on Water Availability and Use in the Limpopo River Basin. Water, 4, 63-84.
https://doi.org/10.3390/w4010063
[10]  Sitoe, S. and Qwist-Hoffman, P. (2013) Limpopo River Basin Monograph.
https://dsc.duq.edu/limpopo-policy/1/
[11]  Brito, R., Famba, S., Munguambe, P., Ibraimo, N. and Julaia, C. (2009) Profile of the Limpopo Basin in Mozambique. WaterNet Working Paper 11.
[12]  Manhique, A.J., Reason, C.J.C., Silinto, B., Zucula, J., Raiva, I., Congolo, F. and Mavume, A.F. (2015) Extreme Rainfall and Floods in Southern Africa in January 2013 and Associated Circulation Patterns. Natural Hazards, 77, 679-691.
https://doi.org: 10.1007/s11069-015-1616-y
[13]  Rapolaki, R.S., Blamey, R.C., Hermes, J.C. and Reason, C.J.C. (2020) Moisture Sources Associated with Heavy Rainfall over the Limpopo River Basin, Southern Africa. Climate Dynamics, 55, 1473-1487.
https://doi.org/10.1007/s00382-020-05336-w
[14]  Salviano, M., Pereira Filho, A. and Vemado, F. (2021) TOPMODEL Hydrometeorological Modeling with Rain Gauge Data Integrated by High-Resolution Satellite Estimates. A Case Study in Muriaé River Basin, Brazil. Atmospheric and Climate Sciences, 11, 486-507.
https://doi.org/10.4236/acs.2021.113029
[15]  Beven, K.J. and Kirkby, M.J. (1979) A Physically Based, Variable Contributing Area Model of Basin Hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Journal, 24, 43-69.
https://doi.org/10.1080/02626667909491834
[16]  Beven, K.J., Kirkby, M.J., Schofield, N. and Tagg, A.F. (1984) Testing a Physically-Based Flood Forecasting Model (TOPMODEL) for Three UK Catchments. Journal of Hydrology, 69, 119-143.
https://doi.org/10.1016/0022-169490159-8
[17]  Beven, K. (1997) TOPMODEL: A Critique. Hydrological Processes, 11, 1069-1085.
https://doi.org/10.1002/(SICI)1099-1085(199707)11:9<1069::AID-HYP545>3.0.CO;2-O
[18]  Beven, K.J. (2012) Rainfall-Runoff Modeling: The Primer. 2nd Edition, John Wiley & Sons, Chichester.
https://doi.org/10.1002/9781119951001
[19]  Beven, K.J., Kirkby, M.J., Freer, J.E. and Lamb, R. (2021) A History of TOPMODEL. Hydrology and Earth System Sciences, 25, 527-549.
https://doi.org/10.5194/hess-25-527-2021
[20]  Brock, F.V. and Richardson S.J. (2001) Static Preformance Characteristics, Chapter 3, 46-61.
[21]  Alsumaiti, T.S., Hussein, K., Ghebreyesus, D.T. and Sharif, H.O. (2020) Performance of the CMORPH and GPM IMERG Products over the United Arab Emirates. Remote Sensing, 12, Article No. 1426.
https://doi.org/10.3390/rs12091426
[22]  Joyce, R.J., Janowiak, J.E., Arkin, P.A. and Xie, P. (2004) CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of Hydrometeorology, 5, 487-503.
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
[23]  Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K.L., Joyce, R.J., Kidd, C., et al. (2019). Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In: Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K. and Turk, F.J., Eds., Satellite Precipitation Measurement, Springer, Cham, 343-353.
https://doi.org/10.1007/978-3-030-24568-9_19
[24]  Mu, Q., Zhao, M. and Running, S.W. (2011) Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sensing of Environment, 115, 1781-1800.
https://doi.org/10.1016/j.rse.2011.02.019
[25]  Rodell, M., Houser, P.R., Jambor, U.E.A., Gottschalck, J., Mitchell, K., Meng, C.J., et al. (2004) The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85, 381-394.
https://doi.org/10.1175/BAMS-85-3-381
[26]  Duan, Q., Sorooshian, S. and Gupta, V. (1992) Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models. Water Resources Research, 28, 1015-1031.
https://doi.org/10.1029/91WR02985
[27]  Naeini, M.R., Analui, B., Gupta, H.V., Duan, Q. and Sorooshian, S. (2019) Three Decades of the Shuffled Complex Evolution (SCE-UA) Optimization Algorithm: Review and Applications. Scientia Iranica, 26, 2015-2031.
[28]  Nash, J.E. and Sutcliffe, J.V. (1970) River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. Journal of Hydrology, 10, 282-290.
https://doi.org/10.1016/0022-169490255-6
[29]  Gupta, H.V., Kling, H., Yilmaz, K.K. and Martinez, G.F. (2009) Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modeling. Journal of Hydrology, 377, 80-91.
https://doi.org/10.1016/j.jhydrol.2009.08.003
[30]  Knoben, W.J., Freer, J.E. and Woods, R.A. (2019) Inherent Benchmark or Not? Comparing Nash-Sutcliffe, and Kling-Gupta Efficiency Scores. Hydrology and Earth System Sciences, 23, 4323-4331.
https://doi.org/10.5194/hess-23-4323-2019
[31]  Duan, Q., Sorooshian, S. and Gupta, V.K. (1994) Optimal Use of the SCE-UA Global Optimization Method for Calibrating Watershed Models. Journal of Hydrology, 158, 265-284.
https://doi.org/10.1016/0022-169490057-4
[32]  Franchini, M., Wendling, J., Obled, C. and Todini, E. (1996) Physical Interpretation and Sensitivity Analysis of the TOPMODEL. Journal of Hydrology, 175, 293-338.
https://doi.org/10.1016/S0022-169480015-1
[33]  Tucci, C.E.M. (1998) Modelos hidrológicos. Universidade Federal do Rio Grande do Sul, Porto Alegre.
[34]  Brighenti, T.M., Bonumá, N.B., Chaffe, P.L.B., Grison, F. and Kobiyama, M. (2017) Análise de sensibilidade como primeiro passo para modelagem hidrológica: Estudo de caso do o modelo SWAT. Simpósio Brasileiro de Recursos Hídricos, Porto Alegre, 26 November-1 December 2017, 8 p..
https://anais.abrhidro.org.br/job.php?Job=2479
[35]  Reason, C.J. and Smart, S. (2015) Tropical Southeast Atlantic Warm Events and Associated Rainfall Anomalies over Southern Africa. Frontiers in Environmental Science, 3, Article No. 24.
https://doi.org/10.3389/fenvs.2015.00024
[36]  Kidd, C. and Huffman, G. (2011) Global Precipitation Measurement. Meteorological Applications, 18, 334-353.
https://doi.org/10.1002/met.284
[37]  Joyce, R.J., Xie, P., Yarosh, Y., Janowiak, J.E. and Arkin, P.A. (2010) CMORPH: A “Morphing” Approach for High-Resolution Precipitation Product Generation. In: Gebremichael, M. and Hossain, F., Eds., Satellite Rainfall Applications for Surface Hydrology, Springer, Dordrecht, 23-37.
https://doi.org/10.1007/978-90-481-2915-7_2
[38]  Pereira Filho, A.J., Vemado, F., Vemado, G., Gomes Vieira Reis, F.A., Giordano, L.D.C., Cerri, R.I., et al. (2018) A Step towards Integrating CMORPH Precipitation Estimation with Rain Gauge Measurements. Advances in Meteorology, 2018, Article ID: 2095304.
https://doi.org/10.1155/2018/2095304
[39]  Janowiak, J.E., Kousky, V.E. and Joyce, R.J. (2005) Diurnal Cycle of Precipitation Determined from the CMORPH High Spatial and Temporal Resolution Global Precipitation Analyses. Journal of Geophysical Research: Atmospheres, 110, Article ID: D23105.
https://doi.org/10.1029/2005JD006156
[40]  Monteith, J.L. (1965) Evaporation and Environment. Symposia of the Society for Experimental Biology, 19, 205-234.
[41]  Ruhoff, A.L., Aragão, L.E.O., Collischonn, W., Rocha, H.R.D., Mu, Q. and Running, S. (2011) MOD16: Desafios e limitações para a estimativa global de evapotranspiração. Repositório Institucional (RI) da Universidade Federal do Rio Grande do Sul (UFRGS),
http://repositorio.furg.br/handle/1/1256
[42]  Running, S., Mu, Q., Zhao, M. and Moreno, A. (2019) MOD16A2GF MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global 500 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC.
[43]  Silva, F.B. (2013) Modelagem da produtividade primária bruta na Amazônia. Tese de Doutorado em Sensoriamento Remoto-Instituto Nacional de Pesquisas Espaciais. São José dos Campos, São Paulo.
[44]  Hollanda, M.P., Cecilio, R.A., Campanharo, W.A., Zanetti, S.S., de Andrade, L.N. and Garcia, G.D.O. (2015) Evaluation of TOPMODEL for Prediction of the Runoff of a Watershed under Different Land Uses/Avaliação do TOPMODEL na estimativa do escoamento superficial em microbacia hidrográfica em diferentes usos. Revista Brasileira de Engenharia Agrícola e Ambiental, 19, 489-497.
https://doi.org/10.1590/1807-1929/agriambi.v19n5p489-496
https://www.scielo.br/j/rbeaa/a/cyB8frq8dfnTJKSrkH4SMwJ/?lang=pt
[45]  Muhammed, A.H. (2012) Satellite-Based Evapotranspiration Estimation and Runoff Simulation: A Topmodel Application to the Gilgel Abay Catchment, Ethiopia. Master’s Thesis, University of Twente, Enschede.
[46]  Schuler, A.E., Moraes, J.D., Milde, L.C., Groppo, J.D., Martinelli, L.A., Victoria, R.L. and Calijuri, M.L. (2000) Análise da representatividade física dos parametros do TOPMODEL em uma bacia de mesoescala localizada nas cabeceiras do Rio Corumbataí, São Paulo. Revista Brasileira de Recursos Hídricos, 5, 5-25.
[47]  Campling, P., Gobin, A., Beven, K. and Feyen, J. (2002) Rainfall-Runoff Modeling of a Humid Tropical Catchment: The TOPMODEL Approach. Hydrological Processes, 16, 231-253.
https://doi.org/10.1002/hyp.341
[48]  Van Zyl, J.J. (2001) The Shuttle Radar Topography Mission (SRTM): A Breakthrough in Remote Sensing of Topography. Acta Astronautica, 48, 559-565.
https://doi.org/10.1016/S0094-576500020-0
[49]  Silva, R.D. and Kobiyama, M. (2007) Estudo comparativo de três formulações do TOPMODEL na bacia do Rio Pequeno, São José dos Pinhais, PR. Revista Brasileira de Recursos Hídricos, 12, 93-105.
[50]  Rocha Filho, K.L.D. (2010) Modelagem Hidrológica da Bacia do Rio Pirajuçara com TOPMODEL, Telemetria e Radar Meteorológico. Master Dissertation, Universidade de São Paulo, São Paulo.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133