全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Influence of Deposition Temperature on the Electrical and Electrochemical Properties of Carbon-Based Coatings for Metallic Bipolar Plates, Prepared by Cathodic Arc Evaporation

DOI: 10.4236/ampc.2022.124004, PP. 47-57

Keywords: Bipolar Plate, Corrosion, Interfacial Contact Resistance, Carbon Thin Film, Physical Vapor Deposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cathodic arc evaporation is a well-established physical vapor deposition technique which is characterized by a high degree of ionization and high deposition rate. So far, this technique has been mainly used for the deposition of tribological coatings. In this study, anti-corrosive and electrical conductive carbon-based coatings with a metallic interlayer were prepared on stainless steel substrates as surface modification for metallic bipolar plates. Hereby, the influence of the deposition temperature during the deposition of the carbon top layer was investigated. Raman spectroscopy revealed differences in the microstructure at 200°C?compared to 300°C?and 100°C. Measurements of the interfacial contact resistance showed that the deposited coatings significantly improve the electrical conductivity. There are only minor differences between the different carbon top layers. The corrosion resistance of the coatings was studied via potentiodynamic polarization at room temperature and 80°C. Experiments showed that the coating with a carbon top layer deposited at 200°C, considerably reduces the current density and thus corrosion of the substrate is suppressed.

References

[1]  International Energy Agency (2020) Global Energy Review 2019. Technical Report, International Energy Agency, Paris.
https://www.iea.org/reports/global-energy-review-2019
[2]  Carrette, L., Friedrich, K. and Stimming, U. (2000) Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1, 162-193.
https://doi.org/10.1002/1439-7641(20001215)1:4%3C162::AID-CPHC162%3E3.0.CO;2-Z
[3]  Groger, O., Gasteiger, H. and Suchsland, J. (2015) Review-Electromobility: Batteries or Fuel Cells? Journal of the Electrochemical Society, 162, A2605-A2622.
https://doi.org/10.1149/2.0211514jes
[4]  Davies, D., Adcock, P., Turpin, M. and Rowen, S. (2000) Stainless Steel as a Bipolar Plate Material for Solid Polymer Fuel Cells. Journal of Power Sources, 86, 237-242.
https://doi.org/10.1016/S0378-7753(99)00524-8
[5]  Wang, H., Sweikart, M. and Turner, J. (2003) Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, 115, 243-251.
https://doi.org/10.1016/S0378-7753(03)00023-5
[6]  Tawfik, H., Hung, Y. and Mahajan, D. (2007) Metal Bipolar Plates for PEM Fuel Cell—A Review. Journal of Power Sources, 163, 755-767.
https://doi.org/10.1016/j.jpowsour.2006.09.088
[7]  Xu, Z., Qiu, D., Yi, P., Peng, L. and Lai, X. (2020) Towards Mass Applications: A Review on the Challenges and Developments in Metallic Bipolar Plates for PEMFC. Progress in Natural Science: Materials International, 30, 815-824.
https://doi.org/10.1016/j.pnsc.2020.10.015
[8]  Yoon, W., Huang, X., Fazzino, P., Reifsnider, K. and Akkaoui, M. (2008) Evaluation of Coated Metallic Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells. International Journal of Electrochemical Science, 179, 265-273.
https://doi.org/10.1016/j.jpowsour.2007.12.034
[9]  Asri, N., Husaini, T., Sulong, A., Majlan, E. and Daud, W. (2017) Coating of Stainless Steel and Titanium Bipolar Plates for Anticorrosion in PEMFC: A Review. International Journal of Hydrogen Energy, 42, 9135-9148.
https://doi.org/10.1016/j.ijhydene.2016.06.241
[10]  Makkus, R.C., Janssen, A.H., De Bruijn, F.A. and Mallant, R.K.A.M. (2000) Use of Stainless Steel for Cost Competitive Bipolar Plates in the SPFC. Journal of Power Sources, 86, 274-282.
https://doi.org/10.1016/S0378-7753(99)00460-7
[11]  Mohr, P. (2018) Optimierung Von Brennstoffzellen-Bipolarplatten Für Die Automobile Anwendung. Ph.D. Dissertation, University Duisburg-Essen, Duisburg.
https://duepublico2.uni-due.de/receive/duepublico_mods_00045782
[12]  Liang, P., Qiu, D., Peng, L., Yi, P., Lai, X. and Ni, J. (2018) Contact Resistance Prediction of Proton Exchange Membrane Fuel Cell Considering Fabrication Characteristics of Metallic Bipolar Plates. Energy Conversion and Management, 169, 334-344.
https://doi.org/10.1016/j.enconman.2018.05.069
[13]  Pozio, A., Silva, R., Francesco, M.D. and Giorgi, L. (2003) Nafion Degradation in PEFCS from End Plate Iron Contamination. Electrochimica Acta, 48, 1543-1549.
https://doi.org/10.1016/S0013-4686(03)00026-4
[14]  Cheng, X., Shi, Z., Glass, N., Zhang, L., Zhang, J., Song, D., Liu, Z.-S., Wang, H. and Shen, J. (2007) A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation. Journal of Power Sources, 165, 739-756.
https://doi.org/10.1016/j.jpowsour.2006.12.012
[15]  Kim, J.-H., Kim, S.-K.., You, Y.-Z., Kim, D.-I., Hong, S.-T., Suh, H.-C. and Weil, K. (2011) Niobium Sputter Coated Stainless Steel as a Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cell Stacks. International Journal of Electrochemical Science, 6, 4365-4377.
[16]  Zhang, H., Lin, G., Hou, M., Hu, L., Han, Z., Fu, Y., Shao, Z. and Yi, B. (2012) CrN/Cr Multilayer Coating on 316l Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells. Journal of Power Sources, 198, 176-181.
https://doi.org/10.1016/j.jpowsour.2011.09.091
[17]  Huang, N., Yu, H., Xu, L., Zhan, S., Sun, M. and Kirk, D. (2016) Corrosion Kinetics of 316l Stainless Steel Bipolar Plate With Chromiumcarbide Coating in Simulated PEMFC Cathodic Environment. Results in Physics, 6, 730-736.
https://doi.org/10.1016/j.rinp.2016.10.002
[18]  Wang, S., Hou, M., Zhao, Q., Jiang, Y., Wang, Z., Li, H., Fu, Y. and Shao, Z. (2019) Ti/(Ti,Cr)N/CrN Multilayer Coated 316l Stainless Steel by Arc Ion Plating as Bipolar Plates for Proton Exchange Membrane Fuel Cells. Journal of Energy Chemistry, 26, 168-174.
https://doi.org/10.1016/j.jechem.2016.09.004
[19]  Manso, A., Marzo, F., Garicano, X., Alegre, C., Lozano, A. and Barreras, F. (2020) Corrosion Behavior of Tantalum Coatings on AISI 316l Stainless Steel Substrate for Bipolar Plates of PEM Fuel Cells. International Journal of Hydrogen Energy, 45, 20679-20691.
https://doi.org/10.1016/j.ijhydene.2019.12.157
[20]  Xu, M., Kang, S., Lu, J., Yan, X., Chen, T. and Wang, Z. (2020) Properties of a Plasma-nitrided Coating and a CrNx Coating on the Stainless Steel Bipolar Plate of PEMFC. Coatings, 10, Article No. 183.
https://doi.org/10.3390/coatings10020183
[21]  Yi, P., Peng, L., Feng, L., Gan, P. and Lai, X. (2010) Performance of a Proton Exchange Membrane Fuel Cell Stack Using Conductive Amorphous Carbon-Coated 304 Stainless Steel Bipolar Plates. Journal of Power Sources, 195, 7061-7066.
https://doi.org/10.1016/j.jallcom.2011.04.044
[22]  Larijani, M., Yari, M., Afshar, A., Jafarian, M. and Eshghabadi, M. (2011) A Comparison of Carbon Coated and Uncoated 316l Stainless Steel for Using as Bipolar Plates in PEMFCs. Journal of Alloys and Compounds, 509, 7400-7404.
https://doi.org/10.1016/j.jallcom.2011.04.044
[23]  Husby, H., Kongstein, O., Oedegaard, A. and Seland, F. (2014) Carbonpolymer Composite Coatings for PEM Fuel Cell Bipolar Plates. International Journal of Hydrogen Energy, 39, 951-957.
https://doi.org/10.1016/j.ijhydene.2013.10.115
[24]  Mingge, W., Congda, L., Tao, H., Guohai, C., Donghui, W., Haifeng, Z., Dong, Z. and Aiying, W. (2016) Chromium Interlayer Amorphous Carbon Film for 304 Stainless Steel Bipolar Plate of Proton Exchange Membrane Fuel Cell. Surface and Coatings Technology, 307, 374-381.
https://doi.org/10.1016/j.surfcoat.2016.07.069
[25]  Mingge, W., Congda, L., Guohai, T.D.A.C., Donghui, W., Haifeng, Z., Dong, Z. and Aiying, W. (2016) Effects of Metal Buffer Layer for Amorphous Carbon Film of 304 Stainless Steel Bipolar Plate. Thin Solid Films, 616, 507-514.
https://doi.org/10.1016/j.tsf.2016.07.043
[26]  Steinhorst, M., Giorgio, M., Topalski, S. and Roch, T. (2019) Investigation of Carbon-Based Coatings on Austenitic Stainless Steel for Bipolar Plates in Proton Exchange Membrane Fuel Cells, Produced by Cathodic Arc Deposition. Proceedings of the FC3—1st Fuel Cell Conference Chemnitz 2019-Saubere Antriebe, Effizient Produziert, Chemnitz, 26-27 November 2019, 1-8.
https://nbn-resolving.org/urn:nbn:de:bsz:ch1-qucosa2-361973
[27]  Hu, R., Tang, J., Zhu, G., Deng, Q. and Lu, J. (2019) the Effect of Duty Cycle and Bias Voltage for Graphite-Like Carbon Film Coated 304 Stainless Steel as Metallic Bipolar Plate. Journal of Alloys and Compounds, 772, 1067-1078.
https://doi.org/10.1016/j.jallcom.2018.09.169
[28]  Alaefour, I., Shahgaldi, S., Zhao, J. and Li, X. (2021) Synthesis and Ex-situ Characterizations of Diamond-Like Carbon Coatings for Metallic Bipolar Plates in PEM Fuel Cells. International Journal of Hydrogen Energy, 46, 11059-11070.
https://doi.org/10.1016/j.ijhydene.2020.09.259
[29]  Yi, P., Zhang, D., Qiu, D., Peng, L. and Lai, X. (2019) Carbon-Based Coatings for Metallic Bipolar Plates Used in Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy, 44, 6813-6843.
https://doi.org/10.1016/j.ijhydene.2019.01.176
[30]  Robertson, J. (2002) Diamond-Like Amorphous Carbon. Materials Science and Engineering: R: Reports, 37, 129-281.
https://doi.org/10.1016/S0927-796X(02)00005-0
[31]  Schultrich, B. (2018) Tetrahedrally Bonded Amorphous Carbon Films I. 1st Edition, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-55927-7
[32]  Mattox, D. (2010) Handbook of Physical Vapor Deposition (PVD) Processing. 2nd Edition, William Andrew, Norwich.
https://doi.org/10.1016/C2009-0-18800-1
[33]  Ferrari, A. and Robertson, J. (2004) Raman Spectroscopy of Amorphous, Nanostructured, Diamond-Like Carbon, and Nanodiamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362, 2477-2512.
https://doi.org/10.1098/rsta.2004.1452
[34]  Onoprienko, A.A., Artamonov, V.V. and Yanchuk, I.B. (2003) Effect of Deposition and Anneal Temperature on the Resistivity of Magnetron Sputtered Carbon Films. Surface and Coatings Technology, 172, 189-193.
https://doi.org/10.1016/S0257-8972(03)00333-5
[35]  Chung, C.-Y., Chen, S.-K., Chiu, P.-J., Chang, M.-H., Hung, T.-T. and Ko, T.-H. (2008) Carbon Film-Coated 304 Stainless Steel as Pemfc Bipolar Plate. Journal of Power Sources, 176, 276-281.
https://doi.org/10.1016/j.jpowsour.2007.10.022
[36]  Ferrari, A. and Robertson, J. (2000) Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Physical Review B, 61, 14095-14107.
https://doi.org/10.1103/PhysRevB.61.14095
[37]  Baptista, D. and Zawislak, F. (2004) Hard and Sp2-Rich Amorphous Carbon Structure Formed by Ion Beam Irradiation of Fullerene, a-C and Polymeric a-C:H Films. Diamond and Related Materials, 13, 1791-1801.
https://doi.org/10.1016/j.diamond.2004.04.006
[38]  Ferrari, A. and Robertson, J. (2001) Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon. Physical Review B, 362, Article ID: 075414.
https://doi.org/10.1103/PhysRevB.64.075414
[39]  Hydrogen and Fuel Cell Technologies Office (2017) Hydrogen and Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan. Technical Report, U.S. Department of Energy, Washington DC.
https://www.energy.gov/sites/default/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
[40]  Pedeferri, P. (2018) Corrosion Science and Engineering. 1st Edition, Springer, Cham.
https://doi.org/10.1007/978-3-319-97625-9

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133