全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrochemical Corrosion Study in H2SO4 of NiAl with Cu Additions, Microstructure and Micro-Hardness at Room Temperature

DOI: 10.4236/jmmce.2022.103018, PP. 225-241

Keywords: NiAl-Cu, Corrosion Behavior, Electrochemical Impedance Spectrum, Vickers Micro Hardness, Microstructure

Full-Text   Cite this paper   Add to My Lib

Abstract:

For many years, intermetallic materials promise applications in a wide variety of technology areas. NiAl intermetallic compound is material that exhibits important characteristics such as high corrosion resistance and low density besides its ability to retain strength and stiffness at elevated temperatures. However NiAl intermetallic is too hard, brittle and exhibits very low ductility at room temperature being the reason because this material is not yet available for structural applications. In order to increase the ductility of the NiAl intermetallic compound, the addition of a third alloying element has been proved, nevertheless it is important to determine if such additions decrease or increase the hardness and the corrosion resistance of the alloy. So, the present investigation reports the corrosion performance of the NiAl intermetallic compound modified with Cu, emphasizing the EIS analysis and the relation between physical parameters and the modelling equations used in the Equivalent Electric Circuit. It was found that the addition of Cu promotes the formation of the γ’-Ni3Al phase in Cu contents greater than 15 at. %, in addition to a decrease in micro hardness and an increment in the Icorr values. In this way, the electrochemical characterization evidenced a high corrosion resistance of these intermetallic alloys.

References

[1]  Darolia, R. (1991) NiAl Alloys for High-Temperature Structural Applications. JOM, 43, 44-49.
https://doi.org/10.1007/BF03220163
[2]  Busso, E.P. and Mcclintock, F.A. (1994) Mechanisms of Cyclic Deformation of NiAl Single Crystals at High Temperatures. Acta Metallurgica et Materialia, 42, 3263-3275.
https://doi.org/10.1016/0956-7151(94)90459-6
[3]  Jayaram, R. and Miller, M.K. (1994) An Atom Probe Study of Grain Boundary and Matrix Chemistry in Microalloyed NiAl. Acta Metallurgica et Materialia, 42, 1561-1572.
https://doi.org/10.1016/0956-7151(94)90366-2
[4]  Field, R. D., Lahrman, D.F. and Darolia, R. (1991) Slip Systems in 〈001〉 Oriented NiAl Single Crystals. Acta Metallurgica et Materialia, 39, 2951-2959.
https://doi.org/10.1016/0956-7151(91)90027-X
[5]  Jafari, R. and Sadeghi, E. (2019) High-Temperature Corrosion Performance of HVAF-Sprayed NiCr, NiAl, and NiCrAlY Coatings with Alkali Sulfate/Chloride Exposed to Ambient Air. Corrosion Science, 160, Article ID: 108066.
https://doi.org/10.1016/j.corsci.2019.06.021
[6]  Abu-Warda, N., López, A.J., López, M.D. and Utrilla, M.V. (2019) High Temperature Corrosion and Wear Behavior of HVOF-Sprayed Coating of Al2O3-NiAl on AISI 304 Stainless Steel. Surface and Coatings Technology, 359, 35-46.
https://doi.org/10.1016/j.surfcoat.2018.12.047
[7]  Liu, Y.D., Sun, J., Pei, Z.L., Li, W., Liu, J.H., Gong, J. and Sun, C. (2020) Oxidation and Hot Corrosion Behavior of NiCrAlYSi+NiAl/cBN Abrasive Coating. Corrosion Science, 167, Article ID: 108486.
https://doi.org/10.1016/j.corsci.2020.108486
[8]  Yang, Y.F., Liu, Z.L., Ren, P., Wang, Q.W., Bao, Z.B., Zhu, S.L. and Li, W. (2020) Hot Corrosion Behavior of Pt+Hf Co-Modified NiAl Coating in the Mixed Salt of Na2SO4-NaCl at 900 ˚C. Corrosion Science, 167, Article ID: 108527.
https://doi.org/10.1016/j.corsci.2020.108527
[9]  Colin, J., Gonzalez, C., Herrera, R. and Juarez-Islas, J.A. (2002) Analysis of Chill-Cast NiAl Intermetallic Compound with Copper Additions. Journal of Materials Engineering and Performance, 11, 487-491.
https://doi.org/10.1361/105994902770343700
[10]  Colín, J., Serna, S., Campillo, B., Flores, O. and Juárez-Islas, J. (2008) Microstructural and Lattice Parameter Study of As-Cast and Rapidly Solidified NiAl Intermetallic Alloys with Cu Additions. Intermetallics, 16, 847-853.
https://doi.org/10.1016/j.intermet.2008.03.001
[11]  Lorenz, W.J. and Mansfield, F. (1981) Determination of Corrosion Rates by Electrochemical DC and AC Methods, Corrosion Science, 21, 647-672.
https://doi.org/10.1016/0010-938X(81)90015-9
[12]  Aksut, A.A., Lorenz, W.J. and Mansfield, F. (1982) The Determination of Corrosion Rates by Electrochemical D.C and A.C Methods—II. Systems with Discontinuous Steady State Polarization Behavior. Corrosion Science, 22, 611-619.
https://doi.org/10.1016/0010-938X(82)90042-7
[13]  Mansfeld, F. (1990) Electrochemical Impedance Spectroscopy (EIS) as a New Tool for Investigating Methods of Corrosion Protection. Electrochemica Acta, 35, 1533-1544.
https://doi.org/10.1016/0013-4686(90)80007-B
[14]  Juettner, K., Lorenz, W. J., Kendig, M.W. and Mansfeld, F. (1988) Electrochemical Impedance Spectroscopy on 3-D Inhomogeneous Surfaces. Journal of the Electrochemical Society, 135, 332-339.
https://doi.org/10.1149/1.2095610
[15]  Scully, J.R., Silverman, D.C. and Kendig, M.W. (Eds.) (1991) Electrochemical Impedance: Analysis and Interpretation. ASTM Special Technical Publication No. 1188, ASTM International, Philadelphia, 37.
[16]  Fletcher, S. (1994) Tables of Degenerate Electrical Networks for Use in the Equivalent-Circuit Analysis of Electrochemical Systems. Journal of the Electrochemical Society, 141, 1823-1826.
https://doi.org/10.1149/1.2055011
[17]  Randles, E.B. (1947) Kinetics of Rapid Electrode Reactions. Discussions of the Faraday Society, 1, 11-19.
https://doi.org/10.1039/df9470100011
[18]  Macdonald, D.D. (2006) Reflections on the History of Electrochemical Impedance Spectroscopy. Electrochimica Acta, 51, 1376-1388.
https://doi.org/10.1016/j.electacta.2005.02.107
[19]  González-Rodriguez, J.G., Colín, J.C., Serna, S., Campillo, B. and Albarran, J.L. (2007) Effect of Macroalloying with Cu on the Corrosion Resistance of Rapidly Solidified NiAl Intermetallic in 0.5M H2SO4. Materials Science and Engineering: A, 448, 158-164.
https://doi.org/10.1016/j.msea.2006.11.079
[20]  Bradley, A.J. and Lipson, H. (1938) An X-Ray Investigation of Slowly Cooled Copper-Nickel-Aluminium Alloys. Proceedings of the Royal Society of London, Series A, 167, 421-438.
https://doi.org/10.1098/rspa.1938.0139
[21]  Niu, Q., Li, Z., Cui, G. and Wang, B. (2017) Effect of Flow Rate on the Corrosion Behavior of N80 Steel in Simulated Oil Field Environment Containing CO2 and HAc. International Journal of Electrochemical Science, 12, 10279-10290.
https://doi.org/10.20964/2017.11.23
[22]  Osórioa, W.R., Freitas, E.S. and Garcia, A. (2013) EIS and Potentiodynamic Polarization Studies on Immiscible Monotectic Al–In Alloys. Electrochim. Acta, 102, 436-445.
https://doi.org/10.1016/j.electacta.2013.04.047
[23]  Laboulais, J.N., Mata, A.A., Borrás, V.A. and Muñoz, A.I. (2017) Electrochemical Characterization and Passivation Behaviour of New Beta-Titanium Alloys (Ti35Nb10Ta-XFe). Electrochimica Acta, 227, 410-418.
https://doi.org/10.1016/j.electacta.2016.12.125
[24]  Díaz, E.F., Serna, S., Porcayo-Calderon, J., Cuevas, C., Torres-Islas, A., Molina, A. and Colin, J. (2013) Corrosion Performance of a Novel NiAl-Cu Intermetallic HVOF Protective Coating Part I: Low Temperature Corrosion in 0.5 M H2SO4. International Journal of Electrochemical Science, 8, 7156-7174
[25]  Sherif, E.M., El-Danaf, E.A., Soliman, M.S. and Almajid, A.A. (2012) Corrosion Passivation in Natural Seawater of Aluminum Alloy 1050 Processed by Equal-Channel-Angular-Press. International Journal of Electrochemical Science, 7, 2846-2859.
[26]  Jüttner, K. (1990) Electrochemical Impedance Spectroscopy (EIS) of Corrosion Processes on Inhomogeneous Surfaces. Electrochimica Acta, 35, 1501-1508.
https://doi.org/10.1016/0013-4686(90)80004-8
[27]  Jorcin, J.B., Orazem, M.E., Pebere, N. and Tribollet, B. (2006) CPE Analysis by Local Electrochemical Impedance Spectroscopy. Electrochimica Acta, 51, 1473-1476.
https://doi.org/10.1016/j.electacta.2005.02.128
[28]  Shoar Abouzari, M.R., Berkemeier, F., Schmitz, G. and Wilmer, D. (2009) On the Physical Interpretation of Constant Phase Elements. Solid State Ion, 180, 922-927.
https://doi.org/10.1016/j.ssi.2009.04.002
[29]  John, D.G., Searson, P.C. and Dawson, J.L. (1981) Use of AC Impedance Technique in Studies on Steel in Concrete in Immersed Conditions. British Corrosion Journal, 16, 102-106.
https://doi.org/10.1179/000705981798275002
[30]  Berndt, L., Kleemeier, M., Thiel, K., Hartwig, A. and Burchardt, M. (2018) Anodization of Aluminum in Highly Viscous Phosphoric Acid PART 1: Investigation of Anodic Oxide Layers by Scanning Electron Microscopy (SEM) and In-Situ Electrochemical Impedance Spectroscopy (in-Situ EIS). International Journal of Electrochemical Science, 13, 8867-8888.
https://doi.org/10.20964/2018.09.11
[31]  Deyab, M.A., Abd El-Rehim, S.S., Hassan, H.H. and Shaltot, A.M. (2020) Impact of Rare Earth Compounds on Corrosion of Aluminum Alloy (AA6061) in the Marine Water Environment. Journal of Alloys and Compounds, 820, Article ID: 153428.
https://doi.org/10.1016/j.jallcom.2019.153428
[32]  Liu, C., Zhou, Z. and Li, K.Y. (2017) Improved Corrosion Resistance of CoCrMo Alloy with Self-Passivation Ability Facilitated by Carbon Ion Implantation. Electrochimica Acta, 241, 331-340.
https://doi.org/10.1016/j.electacta.2017.04.127
[33]  Mishra, P., Yavas, D., Bastawros, A.F. and Hebert, K.R. (2020) Electrochemical Impedance Spectroscopy Analysis of Corrosion Product Layer Formation on Pipeline Steel. Electrochimica Acta, 346, Article ID: 136232.
https://doi.org/10.1016/j.electacta.2020.136232

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413