全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Royal Jelly Extract Accelerates Keratinocyte Proliferation, and Upregulates Laminin α3 and Integrin β1 mRNA Expression, via Akt/mTOR/HIF-1α Pathway

DOI: 10.4236/jcdsa.2022.122007, PP. 83-94

Keywords: Royal Jelly, Keratinocyte, Proliferation, Epidermal Basement Membrane, Hypoxia-Inducible Factor-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: In the previous decade, various benefits and biological activities of royal jelly, applied in alternative and modern medicine, and cosmetics, have been reported. However, the effects of royal jelly extract (RJ) on keratinocytes have not been fully elucidated. Objective: The primary objectives of this study were to reveal the effects of RJ on keratinocytes and explore the underlying mechanism. Methods: HaCaT cells, an immortal human epidermis-derived keratinocyte cell line, were used in this study. Laminin α3 (LAMA3), integrin β1 (ITGB1), and hypoxia-inducible factor-1α (HIF-1α) mRNA expression levels were determined using real-time PCR. Cell proliferation rate was measured using a bromodeoxyuridine uptake assay. Results: RJ treatment upregulated LAMA3, ITGB1 and HIF-1α mRNA expression, and accelerated HaCaT cell proliferation. Akt and mTOR inhibitors suppressed the RJ-induced HIF-1α expression and cell proliferation. HIF-1α silencing abrogated RJ-induced LAMA3 and ITGB1 mRNA expression and cell proliferation, whereas LAMA3 silencing and antibody-mediated ITGB1 blockade did not affect the effects of RJ. Conclusion: RJ upregulates LAMA3 and ITGB1 mRNA expression levels by HIF-1α expression enhancement. In addition, RJ accelerates keratinocyte proliferation via Akt/mTOR/HIF-1α/NF-κB signaling pathway. These suggest that RJ is beneficial for anti-aging, as a skin care product ingredient.

References

[1]  Kurek-Górecka, A., Górecki, M., Rzepecka-Stojko, A., Balwierz, R. and Stojko, J. (2020) Bee Products in Dermatology and Skin Care. Molecules, 25, Article No. 556.
https://doi.org/10.3390/molecules25030556
[2]  Kanelis, D., Tananaki, C., Liolios, V., Rodopoulou, M.A., Goras, G., Argena, N. and Thrasyvoulou, A. (2018) Investigating the Effect of Supplementary Feeding on Carbohydrate Composition and Quantity of Royal Jelly. Open Journal of Applied Sciences, 8, 141-149. https://doi.org/10.4236/ojapps.2018.84011
[3]  Pavel, C.I., Mărghitaş, L.A., Bobiş, O., Dezmirean, D.S., Şapcaliu, A., et al. (2011) Biological Activities of Royal Jelly—Review. Scientific Papers: Animal Science and Biotechnologies, 44, 108-118.
[4]  Pasupuleti, V.R., Sammugam, L., Ramesh, N. and Gan, S.H. (2017) Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 1259510.
https://doi.org/10.1155/2017/1259510
[5]  Fatmawati, F., Erizka, E. and Hidayat, R. (2019) Royal Jelly (Bee Product) Decreases Inflammatory Response in Wistar Rats Induced with Ultraviolet Radiation. Macedonian Journal of Medical Sciences, 7, 2723-2727.
[6]  Taniguch, Y., Kohno, K., Inoue, S., Koya-Miyata, S., Okamoto, I., et al. (2003) Oral Administration of Royal Jelly Inhibits the Development of Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. International Immunopharmacology, 3, 1313-1324.
https://doi.org/10.1016/S1567-5769(03)00132-2
[7]  Lin, Y., Shao, Q., Zhang, M., Lu, C., Fleming, J., et al. (2019) Royal Jelly-Derived Proteins Enhance Proliferation and Migration of Human Epidermal Keratinocytes in an in Vitro Scratch Wound Model. BMC Complementary and Alternative Medicine, 19, Article No. 175. https://doi.org/10.1186/s12906-019-2592-7
[8]  Park, H.M., Cho, M.H., Cho, Y. and Kim, S.Y. (2012) Royal Jelly Increases Collagen Production in Rat Skin after Ovariectomy. Journal of Medicinal Food, 15, 568-575.
https://doi.org/10.1089/jmf.2011.1888
[9]  Peng, C.C., Sun, H.T., Lin, I., Kuo, P.H. and Li, J.C. (2017) The Functional Property of Royal Jelly 10-Hydroxy-2-Decenoic Acid as a Melanogenesis Inhibitor. BMC Complementary and Alternative Medicine, 17, Article No. 392.
https://doi.org/10.1186/s12906-017-1888-8
[10]  Sugawara, K., Tsuruta, D., Ishii, M., Jones, J.C.R. and Kobayashi, H. (2008) Laminin-332 and -511 in Skin. Experimental Dermatology, 17, 473-480.
https://doi.org/10.1111/j.1600-0625.2008.00721.x
[11]  Watt, F.M. (2002) Role of Integrins in Regulating Epidermal Adhesion, Growth and Differentiation. The EMBO Journal, 21, 3919-3926.
https://doi.org/10.1093/emboj/cdf399
[12]  Roig-Rosello, E. and Rousselle, P. (2020) The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform that Aging Slowly Alters. Biomolecules, 10, Article No. 1607. https://doi.org/10.3390/biom10121607
[13]  Chermnykh, E., Kalabusheva, E. and Vorotelyak, E. (2018) Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. International Journal of Molecular Sciences, 19, Article No. 1003. https://doi.org/10.3390/ijms19041003
[14]  Zhu, A.J., Haae, I. and Watt, F.M. (1999) Signaling via β1 Integrins and Mitogen-Activated Protein Kinase Determines Human Epidermal Stem Cell Fate in Vitro. Proceedings of the National Academy of Sciences of the United States of America, 96, 6728-6733. https://doi.org/10.1073/pnas.96.12.6728
[15]  Gonzales, M., Haan, K., Baker, S.E., Fitchmun, M., Todorov, I., et al. (1999) A Cell Signal Pathway Involving Laminin-5, α3β1 Integrin, and Mitogen-Activated Protein Kinase Can Regulate Epithelial Cell Proliferation. Molecular Biology of the Cell, 10, 259-270. https://doi.org/10.1091/mbc.10.2.259
[16]  Pouysségur, J., Dayan, F. and Mazure, N.M. (2006) Hypoxia Signaling in Cancer and Approaches to Enforce Tumor Regression. Nature, 441, 437-443.
https://doi.org/10.1038/nature04871
[17]  Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Review Cancer, 3, 721-732. https://doi.org/10.1038/nrc1187
[18]  Kietzmann, T. and Gorlach, A. (2005) Reactive Oxygen Species in the Control of Hypoxia-Inducible Factor-Mediated Gene Expression. Seminars in Cell and Developmental Biology, 16, 474-486. https://doi.org/10.1016/j.semcdb.2005.03.010
[19]  Metzen, E. and Ratcliffe, P.J. (2004) HIF Hydroxylation and Cellular Oxygen Sensing. Biological Chemistry, 385, 223-230. https://doi.org/10.1515/BC.2004.016
[20]  Zhu, W.J., Li, P., Wang, L. and Xu, Y.C. (2020) Hypoxia-Inducible Factor-1: A Potential Pharmacological Target to Manage Psoriasis. International Immunopharmacology, 86, Article ID: 106689. https://doi.org/10.1016/j.intimp.2020.106689
[21]  Li, Y., Su, J., Li, F., Chen, X. and Zhang, G. (2017) MiR-150 Regulates Human Keratinocyte Proliferation in Hypoxic Conditions through Targeting HIF-1α and VEGFA: Implications for Psoriasis Treatment. PLoS ONE, 12, e0175459.
https://doi.org/10.1371/journal.pone.0175459
[22]  Bedogni, B., Welford, S.M., Cassarino, D.S., Nickoloff, B.J., Giaccia, A.J., et al. (2005) The Hypoxic Microenvironment of the Skin Contributes to Akt-Mediated Melanocyte Transformation. Cancer Cell, 8, 443-454.
https://doi.org/10.1016/j.ccr.2005.11.005
[23]  Yamada, T., Hasegawa, S., Miyachia, K., Date, Y., Inoue, Y., et al. (2018) Laminin-332 Regulates Differentiation of Human Interfollicular Epidermal Stem Cells. Mechanisms of Ageing and Development, 171, 37-46.
https://doi.org/10.1016/j.mad.2018.03.007
[24]  Lampe, P.D., Nguyen, B.P., Gil, S., Usui, M., Olerud, J., et al. (1998) Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication. The Journal of Cell Biology, 143, 1735-1747. https://doi.org/10.1083/jcb.143.6.1735
[25]  Sayedyahossein, S., Rudkouskaya, A., Leclerc, V. and Dagnino, L. (2016) Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function. Journal of Investigative Dermatology, 136, 425-435.
https://doi.org/10.1016/j.jid.2015.10.056
[26]  Lorenz, K., Grashoff, C., Torka, R., Sakai, T., Langbein, L., et al. (2007) Integrin-Linked Kinase Is Required for Epidermal and Hair Follicle Morphogenesis. The Journal of Cell Biology, 177, 501-513. https://doi.org/10.1083/jcb.200608125
[27]  McDonald, P.C., Fielding, A.B. and Dedhar, S. (2008) Integrin-Linked Kinase— Essential Roles in Physiology and Cancer Biology. Journal of Cell Science, 121, 3121-3132. https://doi.org/10.1242/jcs.017996
[28]  Fitsialos, G., Bourget, I., Augier, S., Ginouvès, A., Rezzonico, R., et al. (2008) HIF1 Transcription Factor Regulates Laminin-332 Expression and Keratinocyte Migration. Journal of Cell Science, 121, 2992-3001. https://doi.org/10.1242/jcs.029256
[29]  Ju, J.A., Godet, I., Ye, I.C., Byun, J., Jayatilaka, H., et al. (2017) Hypoxia Selectively Enhances Integrin Receptor Expression to Promote Metastasis. Molecular Cancer Research, 15, 723-734. https://doi.org/10.1158/1541-7786.MCR-16-0338
[30]  Zhang, B., Li, Y.L., Zhao, J.L., Ouyang, Z., Yu, C., et al. (2018) Hypoxia-Inducible Factor-1 Promotes Cancer Progression through Activating AKT/Cyclin D1 Signaling Pathway in Osteosarcoma. Biomedicine and Pharmacotherapy, 105, 1-9.
https://doi.org/10.1016/j.biopha.2018.03.165
[31]  Valacchi, G., Pecorelli, A., Mencarelli, M., Carbotti, P., Fortino, V., et al. (2008) Rottlerin: A Multifaced Regulator of Keratinocyte Cell Cycle. Experimental Dermatology, 18, 516-521. https://doi.org/10.1111/j.1600-0625.2008.00816.x
[32]  Ghoneum, A. and Said, N. (2019) PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers, 11, Article No. 949.
https://doi.org/10.3390/cancers11070949
[33]  Rezvani, H.R., Ali, N., Serrano-Sanchez, M., Dubus, P., Varon, C., et al. (2011) Loss of Epidermal Hypoxia-Inducible Factor-1α Accelerates Epidermal Aging and Affects Re-Epithelialization in Human and Mouse. Journal of Cell Science, 124, 4172-4183. https://doi.org/10.1242/jcs.082370

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413