全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Propagation Properties of Multi-Hyperbolic Sine-Correlated Beams in Oceanic Turbulence

DOI: 10.4236/opj.2022.124005, PP. 64-77

Keywords: Multi-Hyperbolic Sine-Correlated Beams, Oceanic Turbulence, Spectral Density, Degree of Coherence, Propagate

Full-Text   Cite this paper   Add to My Lib

Abstract:

As a new partially coherent beam, the propagation properties of the multi-hyperbolic sine-correlated (MHSC) beams in turbulent atmospheres have been studied. But as another important medium, the propagation properties of MHSC beams in oceanic turbulence. This paper has studied these questions in detail. The analytical formulas of spectral density and degree of coherence for the propagation are derived and the numerical simulations are represented. It is found that the intensity patterns of MHSC beams will evolve from dark-hollow profiles into Gaussian profiles caused by oceanic turbulence and will degenerate more rapidly with stronger oceanic turbulence. In addition, the coherence region becomes larger with decreasing in the dissipation rate of turbulence kinetic energy in unit mass liquid or increasing in the relative intensity of temperature and salinity fluctuations, mean square temperature dissipation rate. We also find that the degree of coherence of MHSC beams with a higher-order N will decrease more slowly than those of hyperbolic sine-correlated (HSC) beams.

References

[1]  Gori, F. and Santarsiero, M. (2007) Devising Genuine Spatial Correlation Functions. Optics Letters, 32, 3531-3533.
https://doi.org/10.1364/OL.32.003531
[2]  Sahin, S. and Korotkova, O. (2012) Light Sources Generating Far Fields with Tunable Flat Profiles. Optics Letters, 37, 2970-2972.
https://doi.org/10.1364/OL.37.002970
[3]  Korotkova, O., Sahin, S. and Shchepakina, E. (2012) Multi-Gaussian Schell-Model Beams. Journal of the Optical Society of America A—Optics Image Science and Vision, 29, 2159-2164.
https://doi.org/10.1364/JOSAA.29.002159
[4]  Simon, R. and Mukunda, N. (1993) Twisted Gaussian Schell-Model Beams. Journal of the Optical Society of America A (Optics and Image Science), 10, 95-109.
https://doi.org/10.1364/JOSAA.10.000095
[5]  Cui, Y., Wang, F. and Cai, Y.J. (2014) Propagation of a Twist Gaussian-Schell Model Beam in Non-Kolmogorov Turbulence. Optics Communications, 324, 108-113.
https://doi.org/10.1016/j.optcom.2014.03.030
[6]  Wan, L.P. and Zhao, D.M. (2018) Twisted Gaussian Schell-Model Array Beams. Optics Letters, 43, 3554-3557.
https://doi.org/10.1364/OL.43.003554
[7]  Tang, M.M. and Li, H.H. (2020) Statistical Properties of Twisted Gaussian Schell-Model Array Beams in Anisotropic Ocean. Optik, 211, Article ID: 164612.
https://doi.org/10.1016/j.ijleo.2020.164612
[8]  Mei, Z.R. (2014) Two Types of Sinc Schell-Model Beams and Their Propagation Characteristics. Optics Letters, 39, 4188-4191.
https://doi.org/10.1364/OL.39.004188
[9]  Chen, Y.H., Liu, L., Wang, F., Zhao, C.L. and Cai, Y.J. (2014) Elliptical Laguerre-Gaussian Correlated Schell-Model Beam. Optics Express, 22, 13975-13987.
https://doi.org/10.1364/OE.22.013975
[10]  Chen, R., Liu, L., Zhu, S.J., Wu, G.F., Wang, F. and Cai, Y.J. (2014) Statistical Properties of a Laguerre-Gaussian Schell-Model Beam in Turbulent Atmosphere. Optics Express, 22, 1871-1883.
https://doi.org/10.1364/OE.22.001871
[11]  Mei, Z.R. and Korotkova, O. (2013) Cosine-Gaussian Schell-Model Sources. Optics Letters, 38, 2578-2580.
https://doi.org/10.1364/OL.38.002578
[12]  Xu, H.F., Zhang, Z., Qu, J. and Huang, W. (2014) Propagation Factors of Cosine-Gaussian-Correlated Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Express, 22, 22479-22489.
https://doi.org/10.1364/OE.22.022479
[13]  Tang, M.M., Zhao, D.M., Li, X.Z. and Li, H.H. (2017) Focusing Properties of Radially Polarized Multi-Cosine Gaussian Correlated Schell-Model Beams. Optics Communications, 396, 249-256.
https://doi.org/10.1016/j.optcom.2017.03.063
[14]  Tang, M.M., Zhao, D.M., Li, X.Z. and Wang, J.G. (2018) Propagation of Radially Polarized Multi-Cosine Gaussian Schell-Model Beams in Non-Kolmogorov Turbulence. Optics Communications, 407, 392-397.
https://doi.org/10.1016/j.optcom.2017.09.067
[15]  El Gawhary, O. and Severini, S. (2006) Lorentz Beams and Symmetry Properties in Paraxial Optics. Journal of Optics A—Pure and Applied Optics, 8, 409-414.
https://doi.org/10.1088/1464-4258/8/5/007
[16]  Liu, D.J., Zhong, H.Y., Wang, G.Q., Yin, H.M. and Wang, Y.C. (2019) Evolution Properties of a Partially Coherent Lorentz-Gauss Vortex Beam in a Uniaxial Crystal. Journal of Modern Optics, 66, 67-76.
https://doi.org/10.1080/09500340.2018.1511865
[17]  Wan, L.P. and Zhao, D.M. (2019) Controllable Rotating Gaussian Schell-Model Beams. Optics Letters, 44, 735-738.
https://doi.org/10.1364/OL.44.000735
[18]  Zhou, X.Y., Pang, Z.H. and Zhao, D.M. (2020) Partially Coherent Pearcey-Gauss Beams. Optics Letters, 45, 5496-5499.
https://doi.org/10.1364/OL.404277
[19]  Zhang, Y., Pan, K.M., Xu, J., Zhu, W.T. and Zhao, D.M. (2021) Asymmetric Twisted Vortex Gaussian Schell-Model Beams. Optics Communications, 491, Article ID: 126950.
https://doi.org/10.1016/j.optcom.2021.126950
[20]  Zheng, S.M., Huang, J., Ji, X.L., Cheng, K. and Wang, T. (2021) Rotating Anisotropic Gaussian Schell-Model Array Beams. Optics Communications, 484, Article ID: 126684.
https://doi.org/10.1016/j.optcom.2020.126684
[21]  Dong, M. and Yang, Y. (2020) Coherent Vortices Properties of Partially Coherent Elegant Laguerre-Gaussian Beams in the Free Space. Optics and Photonics Journal, 10, 159-166.
https://doi.org/10.4236/opj.2020.106017
[22]  Santarsiero, M., Gori, F., Borghi, R., Cincotti, G. and Vahimaa, P. (1999) Spreading Properties of Beams Radiated by Partially Coherent Schell-Model Sources. Journal of the Optical Society of America A: Optics & Image Science, 16, 106-112.
https://doi.org/10.1364/JOSAA.16.000106
[23]  Shirai, T., Dogariu, A. and Wolf, E. (2003) Mode Analysis of Spreading of Partially Coherent Beams Propagating through Atmospheric Turbulence. Journal of the Optical Society of America A, 20, 1094-1102.
https://doi.org/10.1364/JOSAA.20.001094
[24]  Mandel, L., Wolf, E. and Shapiro, J.H. (1996) Optical Coherence and Quantum Optics. Physics Today, 49, 68-70.
https://doi.org/10.1063/1.2807623
[25]  Wolf, E. and Meystre, P. (2008) Introduction to the Theory of Coherence and Polarization of Light. Physics Today, 61, 59-60.
[26]  Mei, Z.R. (2019) Hyperbolic Sine-Correlated Beams. Optics Express, 27, 7491-7497.
https://doi.org/10.1364/OE.27.007491
[27]  Song, Z.Z., Zhao, D.Y., Han, Z.Y., Ye, J.F., Wang, J.F., Sun, T.T., Liu, Z.J., Liu, S.T. and Liu, B. (2020) Multi-Hyperbolic Sine-Correlated Beams and Their Statistical Properties in Turbulent Atmosphere. Journal of the Optical Society of America A—Optics Image Science and Vision, 37, 1595-1602.
https://doi.org/10.1364/JOSAA.397872
[28]  Arnon, S. (2010) Underwater Optical Wireless Communication Network. Optical Engineering, 49, Article ID: 015001.
https://doi.org/10.1117/1.3280288
[29]  Hou, W.L. (2009) A Simple Underwater Imaging Model. Optics Letters, 34, 2688-2690.
https://doi.org/10.1364/OL.34.002688
[30]  Hou, W.L., Jarosz, E., Woods, S., Goode, W. and Weidemann, A. (2013) Impacts of Underwater Turbulence on Acoustical and Optical Signals and Their Linkage. Optics Express, 21, 4367-4375.
https://doi.org/10.1364/OE.21.004367
[31]  Hou, W.L., Woods, S., Jarosz, E., Goode, W. and Weidemann, A. (2012) Optical Turbulence on Underwater Image Degradation in Natural Environments. Applied Optics, 51, 2678-2686.
https://doi.org/10.1364/AO.51.002678
[32]  Johnson, L.J., Green, R.J. and Leeson, M.S. (2014) Underwater Optical Wireless Communications: Depth-Dependent Beam Refraction. Applied Optics, 53, 7273-7277.
https://doi.org/10.1364/AO.53.007273
[33]  Liu, Y., Zeng, C. and Luo, Y. (2018) Dynamics of a New Rumor Propagation Model with the Spread of Truth. Applied Mathematics, 9, 536-549.
https://doi.org/10.4236/am.2018.95038
[34]  Nikishov, V.V. and Nikishov, V.I. (2000) Spectrum of Turbulent Fluctuations of the Sea-Water Refraction Index. International Journal of Fluid Mechanics Research, 27, 82-98.
https://doi.org/10.1615/InterJFluidMechRes.v27.i1.70
[35]  Shirai, T., Dogariu, A. and Wolf, E. (2003) Mode Analysis of Spreading of Partially Coherent Beams Propagating through Atmospheric Turbulence. Journal of the Optical Society of America A—Optics Image Science and Vision, 20, 1094-1102.
https://doi.org/10.1364/JOSAA.20.001094
[36]  Toselli, I., Andrews, L.C., Phillips, R.L. and Ferrero, V. (2008) Free-Space Optical System Performance for Laser Beam Propagation through Non-Kolmogorov Turbulence. Optical Engineering, 47, Article ID: 026003.
https://doi.org/10.1117/1.2870113

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133