全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epithelial-Mesenchymal Transition and Breast Cancer Stem Cells in Breast Cancer Progression

DOI: 10.4236/abcr.2022.112012, PP. 141-151

Keywords: Epithelial-Mesenchymal Transition, Breast Cancer Stem Cells, E-Cadherin, Vimentin, Signaling Pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

Breast cancer stem cells (BCSCs) are a small subpopulation of cancer cells having the ability of self-renewing and multi-lineage differentiation, which have also been termed as “tumor-initiating cells”. And in recent years, the role of epithelial mesenchymal transition (EMT) in malignant tumors has been valued. This paper will briefly review and discuss the relationship between BCSCs and EMT.

References

[1]  Blick, T., Widodo, E., Hugo, H., et al. (2008) Epithelial Mesenchymal Transition Traits in Human Breast Cancer Cell Lines. Clinical & Experimental Metastasis, 25, 629-642.
https://doi.org/10.1007/s10585-008-9170-6
[2]  Wang, X., Chen, S., Shen, T., et al. (2020) Trichostat in A Reverses Epithelial-Mesenchymal Transition and Attenuates Invasion and Migration in MCF-7 Breast Cancer Cells. Experimental and Therapeutic Medicine, 19, 1687-1694.
https://doi.org/10.3892/etm.2020.8422
[3]  Yang, J., Parker, A., Geert, B., et al. (2020) Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 21, 341-352.
https://doi.org/10.1038/s41580-020-0237-9
[4]  Sarrió, D., Rodriguez-Pinilla, S.M., Hardisson, D., et al. (2008) Epithelial-Mesenchymal Transition in Breast Cancer Relates to the Basal-Like Phenotype. Cancer Research, 68, 989-997.
https://doi.org/10.1158/0008-5472.CAN-07-2017
[5]  Liang, Y., Li, H.-Z., Lu, S.-M., et al. (2011) Down-Regulation of TWIST Decreases Migration and Invasion of Laryngeal Carcinoma Hep-2 Cells by Regulating the E-Cadherin, N-Cadherin Expression. Journal of Cancer Research and Clinical Oncology, 137, Article No. 1487.
https://doi.org/10.1007/s00432-011-1023-z
[6]  Sun, Y., Yi, Y., Gan, S., et al. (2021) miR-574-5p Mediates Epithelial Mesenchymal Transition in Small Cell Lung Cancer by Targeting Vimentin via a Competitive Endogenous RNA Network. Oncology Letters, 21, 459.
https://doi.org/10.3892/ol.2021.12720
[7]  Miyashita, N., Enokido, T., Horie, M., et al. (2021) TGF-β Mediated Epithelial-Mesenchymal Transition and Tumor-Promoting Effects in CMT64 Cells Are Reflected in the Transcriptomic Signature of Human Lung Adenocarcinoma. Scientific Reports, 11, Article No. 22380.
https://doi.org/10.1038/s41598-021-01799-x
[8]  Xue, W., Dong, B., Zhao, Y., et al. (2021) Upregulation of TTYH3 Promotes Epithelial-to-Mesenchymal Transition through Wnt/β-Catenin Signaling and Inhibits Apoptosis in Cholangiocarcinoma. Cellular Oncology, 144, 1351-1361.
https://doi.org/10.1007/s13402-021-00642-9
[9]  Razali, R.A., Lokanathan, Y., Dain Yazid, M., et al. (2019) Modulation of Epithelial to Mesenchymal Transition Signaling Pathways by Olea europaea and Its Active Compounds. International Journal of Molecular Sciences, 20, Article No. 3492.
https://doi.org/10.3390/ijms20143492
[10]  Wan, R., Xu, X., Ma, L., et al. (2020) Novel Alternatively Spliced Variants of Smad4 Expressed in TGF-β-Induced EMT Regulating Proliferation and Migration of A549 Cells. OncoTargets and Therapy, 13, 2203-2213.
https://doi.org/10.2147/OTT.S247015
[11]  Hubchak, S.C., Runyan, C.E., Kreisberg, J.I., et al. (2003) Cytoskeletal Rearrangement and Signal Transduction in TGF-beta1-Stimulated Mesangial Cell Collagen Accumulation. Journal of the American Society of Nephrology, 14, 1969-1980.
https://doi.org/10.1097/01.ASN.0000076079.02452.92
[12]  Li, L., Zhao, F., Lu, J., et al. (2014) Notch-1 Signaling Promotes the Malignant Features of Human Breast Cancer through NF-κB Activation. PLoS ONE, 9, Article ID: e95912.
https://doi.org/10.1371/journal.pone.0095912
[13]  Ngeow, K.C., Friedrichsen, H.J., Li, L., et al. (2018) BRAF/MAPK and GSK3 Signaling Converges to Control MITF Nuclear Export. Proceedings of the National Academy of Sciences of the United States of America, 115, E8668-E8677.
https://doi.org/10.1073/pnas.1810498115
[14]  Baldini, E., Tuccilli, C., Pironi, D., et al. (2021) Expression and Clinical Utility of Transcription Factors Involved in Epithelial-Mesenchymal Transition during Thyroid Cancer Progression. Journal of Clinical Medicine, 10, Article No. 4076.
https://doi.org/10.3390/jcm10184076
[15]  Reinhold, W.C., Reimers, M.A., Lorenzi, P., et al. (2010) Multifactorial Regulation of E-Cadherin Expression: An Integrative Study. Molecular Cancer Therapeutics, 9, 1-16.
https://doi.org/10.1158/1535-7163.MCT-09-0321
[16]  Goossens, S., Vandamme, N., Van Vlierberghe, P., et al. (2017) EMT Transcription Factors in Cancer Development Re-Evaluated: Beyond EMT and MET. Biochimica et Biophysica Acta (BBA): Reviews on Cancer, 1868, 584-591.
https://doi.org/10.1016/j.bbcan.2017.06.006
[17]  Serrano-Gomez, S.J., Maziveyi, M. and Alahari, S.K. (2016) Regulation of Epithelial-Mesenchymal Transition through Epigenetic and Post-Translational Modifications. Molecular Cancer, 15, Article No. 18.
https://doi.org/10.1186/s12943-016-0502-x
[18]  Dave, N., Guaita-Esteruelas, S., Gutarra, S., et al. (2011) Functional Cooperation between Snail1 and Twist in the Regulation of ZEB1 Expression during Epithelial to Mesenchymal Transition. Journal of Biological Chemistry, 28, 12024-12032.
https://doi.org/10.1074/jbc.M110.168625
[19]  Lawson, J.C., Blatch, G.L. and Edkins, A.L. (2009) Cancer Stem Cells in Breast Cancer and Metastasis. Breast Cancer Research and Treatment, 118, 241-254.
https://doi.org/10.1007/s10549-009-0524-9
[20]  Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., et al. (2003) Prospective Identification of Tumorigenic Breast Cancer Cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983-3988.
https://doi.org/10.1073/pnas.0530291100
[21]  Velasco-Velázquez, M.A., Homsi, N., De La Fuente, M., et al. (2012) Breast Cancer Stem Cells. The International Journal of Biochemistry & Cell Biology, 44, 573-577.
https://doi.org/10.1016/j.biocel.2011.12.020
[22]  Park, S.Y., Lee, H.E., Li, H., et al. (2010) Heterogeneity for Stem Cell-Related Markers According to Tumor Subtype and Histologic Stage in Breast Cancer. Clinical Cancer Research, 16, 876-887.
https://doi.org/10.1158/1078-0432.CCR-09-1532
[23]  Zou, W., Yang, Y., Zheng, R., et al. (2020) Association of CD44 and CD24 Phenotype with Lymphnode Metastasis and Survival in Triple-Negative Breast Cancer. International Journal of Clinical and Experimental Pathology, 13, 1008-1016.
[24]  Li, W., Ma, H., Zhang, J., et al. (2017) Unraveling the Roles of CD44/CD24 and ALDH1 as Cancer Stem Cell Markers in Tumorigenesis and Metastasis. Scientific Reports, 7, Article No. 13856.
https://doi.org/10.1038/s41598-017-14364-2
[25]  Ginestier, C., Hur, M.H., Charage-Jauffret, E., et al. (2007) ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 1, 555-567.
https://doi.org/10.1016/j.stem.2007.08.014
[26]  Deng, S., Yang, X., Lassues, H., et al. (2010) Distinct Expression Levels and Patterns of Stem Cell Marker, Aldehydedehydrogenase Isoform1 (ALDH1), in Human Epithelial Cancers. PLoS ONE, 5, e10277.
https://doi.org/10.1371/journal.pone.0010277
[27]  Zang, C.X., Liu, R.J., Zhao, W.G., Sun, Y., Tang, S.F. and Sun, C.G. (2019) Research Progress of Breast Cancer Stem Cell Related Signal Pathway and Its Inhibitor. Journal of Chinese Oncology, 25, 27-31.
[28]  Zhou, L., Wang, D., Sheng, D., et al. (2020) NOTCH4 Maintains Quiescent Mesenchymal-Like Breast Cancer Stem Cells via Transcriptionally Activating SLUG and GAS1 in Triple-Negative Breast Cancer. Theranostics, 10, 2405-2421.
https://doi.org/10.7150/thno.38875
[29]  Sims-Mourtada, J., Opdenaker, L.M., et al. (2015) Taxane-Induced Hedgehog Signaling Is Linked to Expansion of Breast Cancer Stem-Like Populations after Chemotherapy. Molecular Carcinogenesis, 54, 1480-1493.
https://doi.org/10.1002/mc.22225
[30]  Feng, T., Zeng, L.R., Xu, P.P. and Hang, R.Z. (2019) Effect of Cyclopamine on Hedgehog and Notch Signaling Pathway in Human MDA-MB-231 Triple Negative Breast Cancer Cells. Chinese Journal of Cancer Prevention and Treatment, 26, 831-835.
[31]  Song, L., Liu, D., Zhao, Y., et al. (2018) Sinomenine Reduces Growth and Metastasis of Breast Cancer Cells and Improves the Survival of Tumor-Bearing Mice through Suppressing the SHh Pathway. Biomed Pharmacother, 98, 687-693.
https://doi.org/10.1016/j.biopha.2017.12.065
[32]  Xu, X., Zhang, M., Xu, F., et al. (2020) Wnt Signaling in Breast Cancer: Biological Mechanisms, Challenges and Opportunities. Molecular Cancer, 19, Article No. 165.
https://doi.org/10.1186/s12943-020-01276-5
[33]  Jang, G.-B., Kim, J.-Y., Cho, S.-D., et al. (2015) Blockade of Wnt/β-Catenin Signaling Suppresses Breast Cancer Metastasis by Inhibiting CSC-Like Phenotype. Scientific Reports, 5, Article No. 12465.
https://doi.org/10.1038/srep12465
[34]  Wei, W., Tweardy, D.J., Zhang, M., et al. (2014) STAT3 Signaling Is Activated Preferentially in Tumor-Initiating Cells in Claudin-Low Models of Human Breast Cancer. Stem Cells, 32, 2571-2582.
https://doi.org/10.1002/stem.1752
[35]  Iliopoulos, D., Hirsch, H.A., Wang, G., et al. (2011) Inducible Formation of Breast Cancer Stem Cells and the Irdynamic Equilibrium with Non-Stem Cancer Cells via IL6 Secretion. Proceedings of the National Academy of Sciences of the United States of America, 108, 1397-1402.
https://doi.org/10.1073/pnas.1018898108
[36]  Gao, X., Liu, X., Lu, Y., et al. (2019) PIM1 Is Responsible for IL-6-Induced Breast Cancer Cell EMT and Stemness via C-Myc Activation. Breast Cancer, 26, 663-671.
https://doi.org/10.1007/s12282-019-00966-3
[37]  Shen, J., Cao, B., Wang, Y., et al. (2018) Hippo Component YAP Promotes Focal Adhesion and Tumour Aggressiveness via Transcriptionally Activating THBS1/FAK Signalling in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 37, Article No. 175.
https://doi.org/10.1186/s13046-018-0850-z
[38]  Liu, R., Shi, P., Nie, Z., et al. (2016) Mifepristone Suppresses Basal Triple-Negative Breast Cancer Stem Cells by Down-regulating KLF5 Expression. Theranostics, 6, 533-544.
https://doi.org/10.7150/thno.14315
[39]  Kim, J., Jang, G., Sim, S.H., et al. (2021) SMARCA4 Depletion Induces Cisplatin Resistance by Activating YAP1-Mediated Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer. Cancers, 13, Article No. 5474.
https://doi.org/10.3390/cancers13215474
[40]  He, X., Li, B., Shao, Y., et al. (2015) Cell Fusion between Gastric Epithelial Cells and Mesenchymal Stem Cells Results in Epithelial-to-Mesenchymal Transition and Malignant Transformation. BMC Cancer, 15, Article No. 24.
https://doi.org/10.1186/s12885-015-1027-1
[41]  Sarrio, D., Franklin, C.K., Mackay, A., et al. (2012) Epithelial and Mesenchymal Subpopulations within Normal Basal Breast Celline Sex Hibit Distinct Stem Cell/Progenitor Properties. Stem Cells, 30, 292-303.
https://doi.org/10.1002/stem.791
[42]  Bushnell, G.G., Deshmukh, A.P., den Hollanger, P., et al. (2021) Breast Cancer Dormancy:Need for Clinically Relevant Models to Address Current Gaps in Knowledge. NPJ Breast Cancer, 7, Article No. 66.
https://doi.org/10.1038/s41523-021-00269-x
[43]  Mani, S.A., Guo, W., Liao, M.J., et al. (2008) The Epithelial-to-Mesenchymal Transition Generates Cells with Properties of Stem Cell. Cell, 133, 704-715.
https://doi.org/10.1016/j.cell.2008.03.027
[44]  Hennessy, B.T., Gonzalez-Angulo, A.-M., Stemke-Hale, K., et al. (2009) Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics. Cancer Research, 69, 4116-4124.
https://doi.org/10.1158/0008-5472.CAN-08-3441
[45]  Preca, B.-T., Bajdak, K., Mock, K., et al. (2015) A Self-Enforcing CD44s/ZEB1 Feedback Loop Maintains EMT and Stemness Properties in Cancer Cells. International Journal of Cancer, 137, 2566-2577.
https://doi.org/10.1002/ijc.29642
[46]  Wang, M., Meng, J.-Y. and He, S.-F. (2014) Xihuang Pill Induces Mesenchymal-Epithelial Transition and Inhibits Loss of Apical-Basal Polarity in Colorectal Cancer Cell through Regulating ZEB1-SCRIB Loop. Chinese Journal of Integrative Medicine, 20, 751-757.
https://doi.org/10.1007/s11655-014-1812-8
[47]  Zhao, Z.Z., Liu, S. and Lin, H.S. (2021) Research Progress of Cell Fusion Inducing EMT and Generating Breast Cancer Stem Cells. China Journal of Chinese Medicine, 36, 1910-1914.
[48]  Shao, S., An, G.L., Zhao, L., Luo, M.N., Ning, Q., Meng, D., Zhao, X.H. and Lei, J.J. (2020) Notch1 Mediates Breast Cancer Epithelial-Mesenchymal Transition through Slug. Journal of Xi’an Jiaotong University (Medical Sciences), 41, 881-887.
[49]  Chen, J.L., Chang, H., Peng, X.L., Gu, Y.Y., Yi, L., Zhang, G.Y., Zhu, J.D. and Mi, M.T. (2017) 3,6-DHF Regulates EMT in Breast Cancer Cells by Regulating Notch Signaling Pathway. Scientific Reports, 6, Article No. 28858.
https://doi.org/10.1038/srep28858

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413