全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimating the Level of Asymptomatic COVID-19 Infections in Northern Ireland in 2020

DOI: 10.4236/ojmsi.2022.102011, PP. 190-218

Keywords: Pandemic, Epidemic, SARS-CoV-2, COVID-19, Compartmental Model, SEIAR Model, Basic Reproduction Number, Effective Reproduction Number, Parameter Estimates, Fitted Model, Testing Uncertainty, Asymptomatic Infection, Northern Ireland

Full-Text   Cite this paper   Add to My Lib

Abstract:

The identification and understanding of COVID-19 potential routes of transmission are fundamental to informing policies and strategies to successfully control the outbreak. Various studies highlighted asymptomatic infections as one of the silent drivers of the epidemic. An accurate estimation of the asymptomatic cases and the understanding of their contribution to the spread of the disease could enhance the effectiveness of current control strategies, mainly based on the symptom onset, to curb transmission. We investigate the dynamics of the COVID-19 epidemic in Northern Ireland during the period 1st March 25th to December 2020 to estimate the proportion of the asymptomatic infections in the country. We extended our previous model to include the stage of the asymptomatic infection, and we implement the corresponding deterministic model using a publicly available dataset. We partition the data into 11 sets over the period of study and fit the model parameters on the consecutive intervals using the cumulative number of confirmed positive cases for each interval. Moreover, we assess numerically the impacts of uncertainty in testing and we provide estimates of the reproduction numbers using the fitted parameters. We found that the proportion of asymptomatically infectious subpopulations, in Northern Ireland during the period of study, ranged between 5% and 25% of exposed individuals. Also, the estimate of the basic reproduction number, R0, is 3.3089. The lower and upper estimates for herd immunity are (0.6181,

References

[1]  Kermack, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115, 700-721.
https://doi.org/10.1098/rspa.1927.0118
[2]  Anderson, R.M. and May, R.M. (1979) Population Biology of Infectious Diseases: Part I. Nature, 280, 361-367.
https://doi.org/10.1038/280361a0
[3]  May, R.M. and Anderson, R.M. (1979) Population Biology of Infectious Diseases: Part II. Nature, 280, 455-461.
https://doi.org/10.1038/280455a0
[4]  Anderson, R.M., et al. (1994) Populations, Infectious Disease and Immunity: A Very Nonlinear World. Philosophical Transactions of the Royal Society B, 346, 457-505.
https://doi.org/10.1098/rstb.1994.0162
[5]  Li, M.Y. (2018) An Introduction to Mathematical Modeling of Infectious Diseases, Volume 2 of Mathematics of Planet Earth. Springer, Berlin.
[6]  Barbarossa, M.V., Dénes, A., Kiss, G., Nakata, Y., Röst, G. and Vizi, Z. (2015) Transmission Dynamics and Final Epidemic Size of Ebola Virus Disease Outbreaks with Varying Interventions. PLoS ONE, 10, e0131398.
https://doi.org/10.1371/journal.pone.0131398
[7]  Siettos, C.I. and Russo, L. (2013) Mathematical Modeling of Infectious Disease Dynamics. Virulence, 4, 295-306.
https://doi.org/10.4161/viru.24041
[8]  Alahmadi, A., Belet, S., Black, A., Cromer, D., Flegg, J.A., House, T., Jayasundara, P., Keith, J.M., McCaw, J.M., Moss, R., et al. (2020) Influencing Public Health Policy with Data-Informed Mathematical Models of Infectious Diseases: Recent Developments and New Challenges. Epidemics, 32, Article ID: 100393.
https://doi.org/10.1016/j.epidem.2020.100393
[9]  Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., et al. (2020) A New Coronavirus Associated with Human Respiratory Disease in China. Nature, 579, 265-269.
https://doi.org/10.1038/s41586-020-2008-3
[10]  Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., et al. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273.
https://doi.org/10.1038/s41586-020-2012-7
[11]  Zhu, N., Zhang, D.Y., Wang, W.L., Li, X.W., Yang, B., Song, J.D., Zhao, X., Huang, B.Y., Shi, W.F., Lu, R.J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine.
https://doi.org/10.1056/NEJMoa2001017
[12]  Li, H., Burm, S.W., Hong, S.H., Ghayda, R.A., Kronbichler, A., Smith, L., Koyanagi, A., Jacob, L., Lee, K.H. and Shin, J.I.L. (2021) A Comprehensive Review of Coronavirus Disease 2019: Epidemiology, Transmission, Risk Factors, and International Responses. Yonsei Medical Journal, 62, 1.
https://doi.org/10.3349/ymj.2021.62.1.1
[13]  Hu, B., Guo, H., Zhou, P. and Shi, Z.-L. (2020) Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19, 141-154.
https://doi.org/10.1038/s41579-020-00459-7
[14]  Cevik, M., Bamford, C. and Ho, A. (2020) COVID-19 Pandemica Focused Review for Clinicians. Clinical Microbiology and Infection, 26, 842-847.
https://doi.org/10.1016/j.cmi.2020.04.023
[15]  Cevik, M., Kuppalli, K., Kindrachuk, J. and Peiris, M. (2020) Virology, Transmission, and Pathogenesis of SARS-CoV-2. British Medical Journal, 371, m3862.
https://doi.org/10.1136/bmj.m3862
[16]  Bhalla, V., Blish, C.A. and South, A.M. (2020) A Historical Perspective on Ace2 in the COVID-19 Era. Journal of Human Hypertension, 1-5.
https://doi.org/10.1136/bmj.m3862
[17]  van Eijk, L.E., Binkhorst, M., Bourgonje, A.R., Offringa, A.K., Mulder, D.J., Bos, E.M., Kolundzic, N., Abdulle, A.E., van der Voort, P.H.J., Olde Rikkert, M.G.M., et al. (2021) COVID-19: Immunopathology, Pathophysiological Mechanisms, and Treatment Options. The Journal of Pathology, 254, 307-331.
[18]  Bertozzi, A.L., et al. (2020) The Challenges of Modeling and Forecasting the Spread of COVID-19. Proceedings of the National Academy of Sciences, 117, 16732-16738.
https://doi.org/10.1073/pnas.2006520117
[19]  Lin, Q., et al. (2020) A Conceptual Model for the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan, China with Individual Reaction and Governmental Action. International Journal of Infectious Diseases, 93, 211-216.
https://doi.org/10.1016/j.ijid.2020.02.058
[20]  IHME COVID-19 Forecasting Team (2020) Modeling COVID-19 Scenarios for the United States. Nature Medicine, 27, 94-105.
[21]  Davies, N.G., et al. (2020) Effects of Non-Pharmaceutical Interventions on COVID-19 Cases, Deaths, and Demand for Hospital Services in the UK: A Modelling Study. The Lancet Public Health, 5, e375-e385.
https://doi.org/10.1016/S2468-2667(20)30133-X
[22]  Giordano, G. (2020) Modelling the COVID-19 Epidemic and Implementation of Population-Wide Interventions in Italy. Nature Medicine, 26, 855-860.
https://doi.org/10.1038/s41591-020-0883-7
[23]  Sebastiani, G., Massa, M. and Riboli, E. (2020) COVID-19 Epidemic in Italy: Evolution, Projections and Impact of Government Measures. European Journal of Epidemiology, 35, 341-345.
https://doi.org/10.1007/s10654-020-00631-6
[24]  Aràndiga, F., et al. (2020) A Spatial-Temporal Model for the Evolution of the COVID-19 Pandemic in Spain Including Mobility. Mathematics, 8, 1677.
https://doi.org/10.3390/math8101677
[25]  Böhmer, M.M., et al. (2020) Investigation of a COVID-19 Outbreak in Germany Resulting from a Single Travel-Associated Primary Case: A Case Series. The Lancet Infectious Disease, 20, 920-928.
https://doi.org/10.1016/S1473-3099(20)30314-5
[26]  Hoertel, N., et al. (2020) A Stochastic Agent-Based Model of the SARS-CoV-2 Epidemic in France. Nature Medicine, 26, 1417-1421.
https://doi.org/10.1038/s41591-020-1001-6
[27]  Humphries, R., et al. (2020) A Metapopulation Network Model for the Spreading of SARS-CoV-2: Case Study for Ireland.
https://doi.org/10.1101/2020.06.26.20140590
[28]  Röst, G., et al. (2020) Early Phase of the COVID-19 Outbreak in Hungary and Post-Lockdown Scenarios. Viruses, 17, 708.
https://doi.org/10.1101/2020.06.02.20119313
[29]  Azanza, C. and Hernandez-Vargas, E.A. (2020) Epidemiological Characteristics of COVID-19 in Mexico and the Potential Impact of Lifting Confinement across Regions. Frontiers in Physics, 8, 458.
https://doi.org/10.3389/fphy.2020.573322
[30]  Barbarossa, M.V., Fuhrmann, J., Meinke, J.H., Krieg, S., Varma, H.V., Castelletti, N. and Lippert, T. (2020) Modeling the Spread of COVID-19 in Germany: Early Assessment and Possible Scenarios. PLoS ONE, 15, e0238559.
https://doi.org/10.1371/journal.pone.0238559
[31]  Carcione, J.M., Santos, J.E., Bagaini, C. and Ba, J. (2020) A Simulation of a COVID-19 Epidemic Based on a Deterministic Seir Model. Frontiers in Public Health, 8, 230.
https://doi.org/10.3389/fpubh.2020.00230
[32]  Boldog, P., Tekeli, T., Vizi, Z., Dénes, A., Bartha, F.A. and Röst, G. (2020) Risk Assessment of Novel Coronavirus COVID-19 Outbreaks outside China. Journal of Clinical Medicine, 9, 571.
https://doi.org/10.3390/jcm9020571
[33]  Eggo, R.M., Dawa, J., Kucharski, A.J. and Cucunuba, Z.M. (2021) The Importance of Local Context in COVID-19 Models. Nature Computational Science, 1, 6-8.
https://doi.org/10.1038/s43588-020-00014-7
[34]  Rhodes, T., Lancaster, K., Lees, S. and Parker, M. (2020) Modelling the Pandemic: Attuning Models to Their Contexts. BMJ Global Health, 5, e002914.
https://doi.org/10.1136/bmjgh-2020-002914
[35]  Hall, P.A., Kiss, G., Kuhn, T., Moutari, S., Patterson, E. and Smith, E. (2021) Mathematical Modelling of the COVID-19 Epidemic in Northern Ireland in 2020. Open Journal of Modelling and Simulation, 9, 91-110.
https://doi.org/10.4236/ojmsi.2021.92006
[36]  Lee, E.C., Wada, N.I., Grabowski, M.K., Gurley, E.S. and Lessler, J. (2020) The Engines of SARS-CoV-2 Spread. Science, 370, 406-407.
https://doi.org/10.1126/science.abd8755
[37]  Lee, S., Meyler, P., Mozel, M., Tauh, T. and Merchant, R. (2020) Asymptomatic Carriage and Transmission of SARS-CoV-2: What Do We Know? Canadian Journal of Anesthesia, 67, 1424-1430.
https://doi.org/10.1007/s12630-020-01729-x
[38]  Oran, D.P. and Topol, E.J. (2020) Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Annals of Internal Medicine, 173, 362-367.
https://doi.org/10.7326/M20-3012
[39]  Meyerowitz, E.A., Richterman, A., Bogoch, I.I., Low, N. and Cevik, M. (2020) Towards an Accurate and Systematic Characterisation of Persistently Asymptomatic Infection with SARS-CoV-2. The Lancet Infectious Diseases.
https://doi.org/10.1016/S1473-3099(20)30837-9
[40]  Zou, L.R., Ruan, F., Huang, M.X., Liang, L.J., Huang, H.T., Hong, Z.S., Yu, J.X., Kang, M., Song, Y.C., Xia, J.Y., et al. (2020) SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine, 382, 1177-1179.
https://doi.org/10.1056/NEJMc2001737
[41]  Chong, M.Y., et al. (2020) Retrospective Diagnosis of COVID-19 in an Asymptomatic Patient Undergoing Emergency Surgery. Open Journal of Anesthesiology, 10, 277-283.
https://doi.org/10.4236/ojanes.2020.108024
[42]  Pouwels, K.B., House, T., Pritchard, E., Robotham, J.V., Birrell, P.J., Gelman, A., Vihta, K.-D., Bowers, N., Boreham, I., Thomas, H., et al. (2021) Community Prevalence of SARS-CoV-2 in England from April to November, 2020: Results from the ONS Coronavirus Infection Survey. The Lancet Public Health, 6, e30-e38.
https://doi.org/10.1101/2020.10.26.20219428
[43]  Nikolai, L.A., Meyer, C.G., Kremsner, P.G. and Velavan, T.P. (2020) Asymptomatic SARS Coronavirus-2 Infection: Invisible Yet Invincible. International Journal of Infectious Diseases, 100, 112-116.
https://doi.org/10.1016/j.ijid.2020.08.076
[44]  Axell-House, D.B., Lavingia, R., Rafferty, M., Clark, E., Amirian, E.S. and Chiao, E.Y. (2020) The Estimation of Diagnostic Accuracy of Tests for COVID-19: A Scoping Review. The Journal of Infection, 81, 681-697.
https://doi.org/10.1016/j.jinf.2020.08.043
[45]  Jarrom, D., Elston, L., Washington, J., Prettyjohns, M., Cann, K., Myles, S. and Groves, P. (2020) Effectiveness of Tests to Detect the Presence of SARS-CoV-2 Virus, and Antibodies to SARS-CoV-2, to Inform COVID-19 Diagnosis: A Rapid Systematic Review. BMJ Evidence-Based Medicine.
https://doi.org/10.1136/bmjebm-2020-111511
[46]  Ghaffari, A., Meurant, R. and Ardakani, A. (2020) COVID-19 Serological Tests: How Well Do They Actually Perform? Diagnostics, 10, 453.
https://doi.org/10.3390/diagnostics10070453
[47]  Mekonnen, D., Mengist, H.M., Derbie, A., Nibret, E., Munshea, A., He, H.L., Li, B.F. and Jin, T.C. (2020) Diagnostic Accuracy of Serological Tests and Kinetics of Severe Acute Respiratory Syndrome Coronavirus 2 Antibody: A Systematic Review and Meta-Analysis. Reviews in Medical Virology, 31, e2181.
https://doi.org/10.1002/rmv.2181
[48]  Guo, C.C., Mi, J.Q. and Nie, H. (2020) Seropositivity Rate and Diagnostic Accuracy of Serological Tests in 2019-nCoV Cases: A Pooled Analysis of Individual Studies. European Review for Medical and Pharmacological Sciences, 24, 10208-10218.
[49]  Bossuyt, P.M. (2020) Testing COVID-19 Tests Faces Methodological Challenges. Journal of Clinical Epidemiology, 126, 172-176.
https://doi.org/10.1016/j.jclinepi.2020.06.037
[50]  Wikramaratna, P.S., Paton, R.S., Ghafari, M. and Lourenço, J. (2020) Estimating the False-Negative Test Probability of SARS-CoV-2 by rt-pcr. Eurosurveillance, 25, Article ID: 2000568.
https://doi.org/10.2807/1560-7917.ES.2020.25.50.2000568
[51]  Premraj, A., Aleyas, A.G., Nautiyal, B. and Rasool, T.J. (2020) Nucleic Acid and immunological Diagnostics for SARS-CoV-2: Processes, Platforms and Pitfalls. Diagnostics, 10, 866.
https://doi.org/10.3390/diagnostics10110866
[52]  West, R., Kobokovich, A., Connell, N. and Gronvall, G.K. (2020) COVID-19 Antibody Tests: A Valuable Public Health Tool with Limited Relevance to Individuals. Trends in Microbiology, 29, 214-223.
https://doi.org/10.1016/j.tim.2020.11.002
[53]  Lorentzen, H.F., Schmidt, S.A., Sandholdt, H. and Benfield, T. (2020) Estimation of the Diagnostic Accuracy of Real-Time Reverse Transcription Quantitative Polymerase Chain Reaction for SARS-CoV-2 Using Re-Analysis of Published Data. Danish Medical Journal, 67, A04200237.
[54]  Sempos, C.T. and Tian, L. (2021) Adjusting Coronavirus Prevalence Estimates for Laboratory Test Kit Error. American Journal of Epidemiology, 190, 109-115.
https://doi.org/10.1093/aje/kwaa174
[55]  Rao, S.N., Manissero, D., Steele, V.R. and Pareja, J. (2020) A Narrative Systematic Review of the Clinical Utility of Cycle Threshold Values in the Context of COVID-19. Infectious Diseases and Therapy, 9, 573-586.
https://doi.org/10.1007/s40121-020-00324-3
[56]  Department of Health, Northern Ireland (2020) COVID-19 Daily Dashboard Updates.
https://www.health-ni.gov.uk/articles/covid-19-daily-dashboard-updates
[57]  BBC (2021) Coronavirus: NI Facing Six-Week Lockdown from 26 December.
https://www.bbc.co.uk/news/uk-northern-ireland-55349545
[58]  Maria, E.D., Latini, A., Borgiani, P. and Novelli, G. (2020) Genetic Variants of the Human Host Influencing the Coronavirus-Associated Phenotypes (SARS, MERS and COVID-19): Rapid Systematic Review and Field Synopsis. Human Genomics, 14, 1-19.
https://doi.org/10.1186/s40246-020-00280-6
[59]  Kirby, T. (2021) New Variant of SARS-CoV-2 in UK Causes Surge of COVID-19. The Lancet Respiratory Medicine, 9, e20-e21.
https://doi.org/10.1016/S2213-2600(21)00005-9
[60]  Northern Ireland Statistics and Research Agency. 2019 Mid Year Population Estimates for Northern Ireland.
https://www.nisra.gov.uk/sites/nisra.gov.uk/files/publications/MYE19-Bulletin.pdf
[61]  Linton, N.M., Kobayashi, T., Yang, Y.C., Hayashi, K., Akhmetzhanov, A.R., Jung, S., Yuan, B.Y., Kinoshita, R. and Nishiura, H. (2020) Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. Journal of Clinical Medicine, 9, 538.
https://doi.org/10.3390/jcm9020538
[62]  Wang, Y.X., Wang, Y.Y., Chen, Y. and Qin, Q.S. (2020) Unique Epidemiological and Clinical Features of the Emerging 2019 Novel Coronavirus Pneumonia (COVID-19) Implicate Special Control Measures. Journal of Medical Virology, 92, 568-576.
https://doi.org/10.1002/jmv.25748
[63]  Elias, C., Sekri, A., Leblanc, P., Cucherat, M. and Vanhems, P. (2021) The Incubation Period of COVID-19: A Meta-Analysis. International Journal of Infectious Diseases, 104, 708-710.
https://doi.org/10.1016/j.ijid.2021.01.069
[64]  Chen, C., Zhu, C.T., Yan, D.Y., Liu, H.C., Li, D.F., Zhou, Y.Q., Fu, X.F., Wu, J., Ding, C., Tian, G., et al. (2021) The Epidemiological and Radiographical Characteristics of Asymptomatic Infections with the Novel Coronavirus (COVID-19): A Systematic Review and Meta-Analysis. International Journal of Infectious Diseases, 104, 458-464.
https://doi.org/10.1016/j.ijid.2021.01.017
[65]  Byambasuren, O., Cardona, M., Bell, K., Clark, J., McLaws, M.-L. and Glasziou, P. (2020) Estimating the Extent of Asymptomatic COVID-19 and Its Potential for Community Transmission: Systematic Review and Meta-Analysis. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, 5, 223-234.
https://doi.org/10.3138/jammi-2020-0030
[66]  Knipl, D.H., Röst, G. and Wu, J.H. (2013) Epidemic Spread and Variation of Peak Times in Connected Regions Due to Travel-Related Infections—Dynamics of an Antigravity-Type Delay Differential Model. SIAM Journal on Applied Dynamical Systems, 12, 1722-1762.
https://doi.org/10.1137/130914127
[67]  Lauer, S.A., Grantz, K.H., Bi, Q.F., Jones, F.K., Zheng, Q.L., Meredith, H.R., Azman, A.S., Reich, N.G. and Lessler, J. (2020) The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine, 172, 577-582.
https://doi.org/10.7326/M20-0504
[68]  World Health Organization (2020) Coronavirus Disease 2019 (COVID-19) Situation Report 73.
[69]  He, X., Lau, E.H.Y., Wu, P., Deng, X.L., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y.J., Tan, X.H., et al. (2020) Temporal Dynamics in Viral Shedding and Transmissibility of COVID-19. Nature Medicine, 26, 672-675.
https://doi.org/10.1038/s41591-020-0869-5
[70]  Zhao, H.J., Lu, X.X., Deng, Y.B., Tang, Y.J. and Lu, J.C. (2020) COVID-19: Asymptomatic Carrier Transmission Is an Underestimated Problem. Epidemiology & Infection, 148, e116.
https://doi.org/10.1017/S0950268820001235
[71]  Buitrago-Garcia, D., Egli-Gany, D., Counotte, M.J., Hossmann, S., Imeri, H., Ipekci, A.M., Salanti, G. and Low, N. (2020) Occurrence and Transmission Potential of Asymptomatic and Presymptomatic SARS-CoV-2 Infections: A Living Systematic Review and Meta-Analysis. PLoS Medicine, 17, e1003346.
https://doi.org/10.1371/journal.pmed.1003346
[72]  Byrne, A.W., McEvoy, D., Collins, A.B., Hunt, K., Casey, M., Barber, A., Butler, F., Griffin, J., Lane, E.A., McAloon, C., et al. (2020) Inferred Duration of Infectious Period of SARS-CoV-2: Rapid Scoping Review and Analysis of Available Evidence for Asymptomatic and Symptomatic COVID-19 Cases. BMJ Open, 10, e039856.
https://doi.org/10.1136/bmjopen-2020-039856
[73]  MATLAB (2020) version 9.8.0.1417392 (R2020a). The MathWorks Inc., Natick.
[74]  Efron, B. and Tibshirani, R. (1986) Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy. Statistical Science, 1, 54-75.
https://doi.org/10.1214/ss/1177013815
[75]  McKay, M.D., Beckman, R.J. and Conover, W.J. (2000) A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 42, 55-61.
https://doi.org/10.1080/00401706.2000.10485979
[76]  Department of Health (2020) R Number Papers.
https://www.health-ni.gov.uk/R-Number
[77]  Wells, P.M., Doores, K.J., Couvreur, S., Nunez, R.M., Seow, J., Graham, C., Acors, S., Kouphou, N., Neil, S.J.D., Tedder, R.S., et al. (2020) Estimates of the Rate of Infection and Asymptomatic COVID-19 Disease in a Population Sample from Se England. Journal of Infection, 81, 931-936.
https://doi.org/10.1016/j.jinf.2020.10.011
[78]  Britton, T., Ball, F. and Trapman, P. (2020) A Mathematical Model Reveals the Influence of Population Heterogeneity on Herd Immunity to SARS-CoV-2. Science, 369, 846-849.
https://doi.org/10.1126/science.abc6810
[79]  BBC (2021) Coronavirus: Lifting NI Restrictions Will “Need 70%-80% Vaccinated”.
https://www.bbc.co.uk/news/uk-northern-ireland-56000840
[80]  Gabriela, M., Gomes, M., Aguas, R., Corder, R.M., King, J.G., Langwig, K.E., Souto-Maior, C., Carneiro, J., Ferreira, M.U. and Penha-Goncalves, C. (2020) Individual Variation in Susceptibility or Exposure to SARS-CoV-2 Lowers the Herd Immunity Threshold.
[81]  Menni, C., Valdes, A.M., Freidin, M.B., Sudre, C.H., Nguyen, L.H., Drew, D.A., Ganesh, S., Varsavsky, T., Cardoso, M.J., El-Sayed Moustafa, J.S., et al. (2020) Real-Time Tracking of Self-Reported Symptoms to Predict Potential COVID-19. Nature Medicine, 26, 1037-1040.
https://doi.org/10.1038/s41591-020-0916-2
[82]  Drew, D.A., Nguyen, L.H., Steves, C.J., Menni, C., Freydin, M., Varsavsky, T., Sudre, C.H., Jorge Cardoso, M., Ourselin, S., Wolf, J., et al. (2020) Rapid Implementation of Mobile Technology for Real-Time Epidemiology of COVID-19. Science, 368, 1362-1367.
https://doi.org/10.1101/2020.04.02.20051334
[83]  Antonelli, M., Capdevila, J., Chaudhari, A., Granerod, J., Canas, L.S., Graham, M.S., Klaser, K., Modat, M., Molteni, E., Murray, B., et al. (2020) Identification of Optimal Symptom Combinations to Trigger Diagnostic Work-Up of Suspected COVID-19 Cases: Analysis from a Community-Based, Prospective, Observational Cohort.
https://doi.org/10.1101/2020.11.23.20237313
[84]  Sudre, C.H., Lee, K.A., Lochlainn, M.N., Varsavsky, T., Murray, B., Graham, M.S., Menni, C., Modat, M., Bowyer, R.C.E., Nguyen, L.H., et al. (2021) Symptom Clusters in COVID-19: A Potential Clinical Prediction Tool from the COVID Symptom Study App. Science Advances, 7, eabd4177.
https://doi.org/10.1126/sciadv.abd4177
[85]  Pavelka, M., Van-Zandvoort, K., Abbott, S., Sherratt, K., Majdan, M., et al. (2021) The Impact of Population-Wide Rapid Antigen Testing on SARS-CoV-2 Prevalence in Slovakia. Science, 372, 635-641.
https://doi.org/10.1101/2020.12.02.20240648
[86]  Ghosh, D., Bernstein, J.A. and Mersha, T.B. (2020) COVID-19 Pandemic: The African Paradox. Journal of Global Health, 10, Article ID: 020348.
https://doi.org/10.7189/jogh.10.020348
[87]  Bherwani, H., Gupta, A., Anjum, S., Anshul, A., and Kumar, R. (2020) Exploring Dependence of COVID-19 on Environmental Factors and Spread Prediction in India. NPJ Climate and Atmospheric Science, 3, 1-13.
https://doi.org/10.1038/s41612-020-00142-x
[88]  Merow, C. and Urban, M.C. (2020) Seasonality and Uncertainty in Global COVID-19 Growth Rates. Proceedings of the National Academy of Sciences, 117, 27456-27464.
https://doi.org/10.1073/pnas.2008590117
[89]  Moore, S., Hill, E.M., Tildesley, M.J., Dyson, L. and Keeling, M.J. (2021) Vaccination and Non-Pharmaceutical Interventions for COVID-19: A Mathematical Modelling Study. The Lancet Infectious Diseases, 21, 793-802.
[90]  The Hyper-Transmissible SARS-CoV-2 Omicron Variant Exhibits Significant Antigenic Change, Vaccine Escape and a Switch in Cell Entry Mechanism.
https://www.medrxiv.org/content/10.1101/2022.01.03.21268111v1.full
[91]  Rapid Increase in Omicron Infections in England during December 2021: REACT-1 Study.
https://www.medrxiv.org/content/10.1101/2021.12.22.21268252v1.full
[92]  COVID-19: Omicron Is Causing More Infections but Fewer Hospital Admissions than Delta, South African Data Show.
https://www.bmj.com/content/375/bmj.n3104?
ijkey=2f648539a955a9961630eec102e5e70aa91499ae&keytype2=tf_ipsecsha

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133