全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Efficacy of Insecticides and Long-Lasting Insecticidal Nets for Control of Culex quinquefasciatus Say Populations from Northern Nigeria

DOI: 10.4236/ae.2022.102014, PP. 186-203

Keywords: Culex quinquefasciatus, Metabolic, Resistance, Insecticides, LLINs, PBO, P450s

Full-Text   Cite this paper   Add to My Lib

Abstract:

Information on Culex mosquitoes (vectors of filarial worm and viral encephalitis) from northern Nigeria is scanty, hindering evidence-based control. Here, two Culex populations (Kano and Kaduna) were characterized. Culex quinquefasciatus and Culex pipiens were found breeding in sympatry, with some hybrid individuals identified. Larval bioassays revealed high temephos resistance (LC50s = 1.34 mg/mL and 3.01 mg/mL for Kano and Kaduna, respectively). Larvae were more sensitive to α-cypermethrin (LC50s = 0.026 mg/mL and 0.067 mg/mL for Kano and Kaduna). WHO adult tube bioassays revealed high pyrethroid and DDT resistance, with mortalities of 44.01% ± 6.79%, 35.83% ± 12.58%, 29.69% ± 9.97% and 52.47% ± 4.34% for permethrin, deltamethrin, α-cypermethrin and DDT, respectively. Highest resistance was observed with bendiocarb (mortality = 13.58% ± 3.98%). High resistance was obtained with fenitrothion and malathion (mortalities = 21% ± 4.76% and 56.47% ± 8.67%, respectively), while a full susceptibility was observed with pirimiphos-methyl. Pre-exposure to piperonylbutoxide (PBO) significantly recovered α-cypermethrin susceptibility (mortality = 82% ± 5.16%, χ2 = 50.99, p < 0.0001), compared with the conventional bioassay (mortality = 32 ± 7.30). Mortalities of <20% were obtained in cone bioassays with Yorkool, DuraNet and PermaNet3.0 (side panels) nets, suggesting a loss of efficacy of conventional long-lasting insecticidal nets. However, mortalities of 99% and 86% were obtained in Kano and Kaduna populations using the roof of PermaNet3.0 (containing PBO and

References

[1]  Zittra, C., Flechl, E., Kothmayer, M., Vitecek, S., Rossiter, H. and Zechmeister, T. (2016) Ecological Characterization and Molecular Differentiation of Culex pipiens Complex Taxa and Culex torrentium in Eastern Austria. Parasites & Vectors, 9, 197.
https://doi.org/10.1186/s13071-016-1495-4
[2]  World Health Organization. Division of Vector Biology and Control (1989) Geographical Distribution of Arthropod-Borne Diseases and Their Principal Vectors. World Health Organization, Geneva, WHO/VBC/89.967.
https://apps.who.int/iris/handle/10665/60575
[3]  Kalaycioglu, H., Korukluoglu, G., et al. (2012) Emergence of West Nile Virus Infections in Humans in Turkey, 2010 to 2011. European Surveillance, 17, Article ID: 20182.
https://doi.org/10.2807/ese.17.21.20182-en
[4]  Yadouléton, A., Badirou, K., Agbanrin, R., Jöst, H., Attolou, R., Srinivasan, R., Gil, P. and Martin, A. (2015) Insecticide Resistance Status in Culex quinquefasciatus in Benin. Parasites & Vectors, 8, 17.
https://doi.org/10.1186/s13071-015-0638-3
[5]  Ekloh, W., Oppong, G., Adinortey, M.B., Stiles-Ocran, J.B. and Hayford, D. (2013) Susceptibility of Culex quinquefasciatus Populations to Deltamethrin in the Sefwi Area of the Western Region of Ghana. European Journal of Experimental Biology, 3, 72-79.
[6]  Sattler, M., Mtasiwa, D., Kiama, M., Premji, Z., Tanner, M. and Killeen, G. (2005) Habitat Characterization and Spatial Distribution of Anopheles sp. Mosquito Larvae in Dar es Salaam (Tanzania) during an Extended Dry Period. Malaria Journal, 4, 4.
https://doi.org/10.1186/1475-2875-4-4
[7]  Kalaivani, A., Raja, D., Geetha, M. and Jegadeesh, R. (2015) Mosquito Menace: A Major Threat in Modern Era. Medical Journal of Dr. D.Y. Patil Vidyapeeth, 89, 414-415.
https://doi.org/10.4103/0975-2870.150500
[8]  Kwan, J.L., Kluh, S., Madon, M.B. and Reisen, W.K. (2010) West Nile Virus Emergence and Persistence in Los Angeles, California, 2003-2008. American Journal of Tropical Medicine and Hygiene, 83, 400-412.
https://doi.org/10.4269/ajtmh.2010.10-0076
[9]  Phumee, A., Chompoosri, J., Intayot, P., et al. (2019) Vertical Transmission of Zika Virus in Culex quinquefasciatus Say and Aedes aegypti (L.) Mosquitoes. Scientific Reports, 9, Article No. 5257.
https://doi.org/10.1038/s41598-019-41727-8
[10]  Sang, R., Kioko, E., Lutomiah, J., Warigia, M., Ochieng, C., O’Guinn, M., Lee, J.S., Koka, H., Godsey, M., Hoel, D., Hanafi, H., Miller, B., Schnabel, D., Breiman, R.F. and Richardson, J. (2010) Rift Valley Fever Virus Epidemic in Kenya, 2006/2007: The Entomologic Investigations. American Journal of Tropical Medicine and Hygiene, 83, 28-37.
https://doi.org/10.4269/ajtmh.2010.09-0319
[11]  Mackay, A.J., Kramer, W.L., Meece, J.K., Brumfield, R.T. and Foil, L.D. (2010) Host Feeding Patterns of Culex Mosquitoes (Diptera: Culicidae) in East Baton Rouge Parish, Louisiana. Journal of Medical Entomology, 47, 238-248.
https://doi.org/10.1093/jmedent/47.2.238
[12]  Unlu, I., Kramer, W.L., Roy, A.F. and Foil, L.D. (2010) Detection of West Nile Virus RNA in Mosquitoes and Identification of Mosquito Blood Meals Collected at Alligator Farms in Louisiana. Journal of Medical Entomology, 47, 625-633.
https://doi.org/10.1093/jmedent/47.4.625
[13]  Weissenbock, H., Hubalek, Z., Bakonyi, T. and Nowotny, N. (2010) Zoonotic Mosquito-Borne Flaviviruses: Worldwide Presence of Agents with Proven Pathogenicity and Potential Candidates of Future Emerging Diseases. Veterinary Microbiology, 140, 271-280.
https://doi.org/10.1016/j.vetmic.2009.08.025
[14]  Remme, J.H., Feenstra, P., Lever, P., Medici, A.C., Morel, C.M. and Noma, M. (2006) Tropical Diseases Targeted for Elimination: Chagas Disease, Lymphatic Filariasis, Onchocerciasis, and Leprosy. In: Jamison, D.T., Breman, J.G., Measham, A.R.., et al., Eds., Disease Control Priorities in Developing Countries, 2nd Edition, Oxford University Press and the World Bank, Oxford, 433-447.
https://doi.org/10.1596/978-0-8213-6179-5/Chpt-22
[15]  Okorie, P.N., Ademowo, G.O., Saka, Y., Davies, E. and Okoronkwo, C. (2013) Lymphatic Filariasis in Nigeria; Micro-Stratification Overlap Mapping (MOM) as a Prerequisite for Cost-Effective Resource Utilization in Control and Surveillance. PLOS Neglected Tropical Diseases, 7, e2416.
https://doi.org/10.1371/journal.pntd.0002416
[16]  WHO (2010) WHO Recommended Long-Lasting Insecticidal Mosquito Nets. World Health Organization, Geneva.
http://apps.who.int/iris/bitstream/handle/10665/44669/9789241502160_eng.pdf?sequence=1
[17]  Anosike, J.C., Azoro, V.A., Nwoke, B.E.B., Keke, R.I., Okere, A.N. and Oku, E.E. (2003) Dracunculiasis in the North-Eastern Border of Ebonyi State, South-Eastern Nigeria. The International Journal of Hygiene and Environmental Health, 206, 45-51.
https://doi.org/10.1078/1438-4639-00176
[18]  Hotez, P.J., Asojo, O.A. and Adesina, A.M. (2012) Nigeria: ‘‘Ground Zero’’ for the High Prevalence Neglected Tropical Diseases. PLOS Neglected Tropical Diseases, 6, e1600.
https://doi.org/10.1371/journal.pntd.0001600
[19]  Obiora, A.E., Jorge, C., Ilaria, D., Ifeoma, A., Chuku, O., Tini, G. and Christl, A.D. (2018) Environmental Suitability for Lymphatic Filariasis in Nigeria. Parasites & Vectors, 11, 513.
https://doi.org/10.1186/s13071-018-3097-9
[20]  WHO (2006) Guidelines for Testing Mosquito Adulticides Intended for Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs). WHO/CDS/NTD/ WHOPES/GCDDP/2006.3.
[21]  Ranson, H., N’Guessan, R., Lines, J., Moiroux, N., Nkuni, Z. and Corbel, V. (2011) Pyrethroid Resistance in African Anopheline Mosquitoes: What Are the Implications for Malaria Control? Trends in Parasitology, 27, 91-98.
https://doi.org/10.1016/j.pt.2010.08.004
[22]  WHO (2022) World health Organization Fact Sheet on Lymphatic Filariasis 6, October 2019.
https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis
[23]  Manga, L. (2002) Vector-Control Synergies, between “‘Roll Back Malaria” and the Global Programme to Eliminate Lymphatic Filariasis, in the African Region. Annals of Tropical Medicine and Parasitology, 96, S129-S132.
https://doi.org/10.1179/000349802125002473
[24]  Maestre, S.R. and Gómez, C.D. (2013) Dengue: Epidemiología, políticaspúblicas y resistencia de vectoresa insecticidas. Revista Ciencias Biomedicas, 4, 302-317.
[25]  Fagbohun, I.K., Oyeniyi, T.A, Idowu, T.E., Otubanjo, O.A. and Awolola, T.S. (2019) Cytochrome P450 Mono-Oxygenase and Resistance Phenotype in DDT and Deltamethrin-Resistant Anopheles gambiae (Diptera: Culicidae) and Culex quinquefasciatus in Kosofe, Lagos, Nigeria. Journal of Medical Entomology, 56, 817-821.
https://doi.org/10.1093/jme/tjz006
[26]  Adeogun, A.O., Olojede, J.B., Oduola, A.O. and Awolola, T.S. (2012) Efficacy of a Combination Long Lasting Insecticidal Net (PermaNet° 3.0) against Pyrethroid Resistant Anopheles gambiae s.s. and Culex quinquefasciatus: An Experimental Hut Trial in Nigeria. The Nigerian Journal of Clinical and Biomedical Research, 6, 1.
[27]  Egbuche, C.M., Samuel, P.U., Ezihe, C.K., Ukonze, C.B., Chukwuzoba, O.A., Okoye, K.C. and Onyido, A.E. (2019) Evaluation of PermaNet° 2.0 in the Control of Culex quinquefasciatus and Aedes aegypti from Awka, Anambra State, Nigeria. The Nigerian Annals of Pure and Applied Sciences, 1, 68-75.
https://doi.org/10.46912/napas.66
[28]  Muhammad, B.R., Yayo, A.M., Ajanusi, O.J. and Lawal, I.A. (2021) Relative Abundance and Molecular Identification of Culex pipiens Complex (Diptera: Culicidae) in Kura Local Government Area North-western Nigeria. Parasite Epidemiology and Control, 14, e00213.
https://doi.org/10.1016/j.parepi.2021.e00213
[29]  Robert, L.M. (2002) Insect Control. In: ULLMANN’S Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 1-4.
[30]  Pam, D.D., de Souza, D.K., D’Souza, S., Opoku, M., Sanda, S., Nazaradden, I., Anagbogu,, I.N., Okoronkwo, C., Davies, E., Elhassan, E., Molyneux, D.H., Bockarie, M.J. and Koudou, B.G. (2017) Is Mass Drug Administration against Lymphatic Filariasis Required in Urban Settings? The Experience in Kano, Nigeria. PLOS Neglected Tropical Diseases, 11, e0006004.
https://doi.org/10.1371/journal.pntd.0006004
[31]  Gillies, M.T. and Coetzee, M. (1987) A Supplement to the Anopheline of Africa South of the Sahara. South African Institute for Medical Research SAIMR, No. 55, 1-143.
[32]  Das, S., Garver, L. and Dimopoulos, G. (2007) Protocol for Mosquito Rearing (A. gambiae). Journal of Visualized Experiments, No. 5, 221.
https://doi.org/10.3791/221
[33]  Livak, K.J. (1984) Organization and Mapping of a Sequence on the Drosophila melanogaster X and Y Chromosomes That Is Transcribed during Spermatogenesis. Genetics, 107, 611-634.
https://doi.org/10.1093/genetics/107.4.611
[34]  Smith, J.L. and Fonseca, D.M. (2004) Rapid Assay for Identification of the Culex pipiens Complex, Their Hybrids and Other Sibling Species (Diptera: Culicidae). American Journal of Tropical Medicine and Hygiene, 70, 339-345.
https://doi.org/10.4269/ajtmh.2004.70.339
[35]  WHO (2005) Guidelines for Laboratory and Field Testing of Mosquito Larvicides. World Health Organization, Geneva, 1-41.
[36]  WHO (2016) Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. 2nd Edition.
https://apps.who.int/iris/bitstream/handle/10665/250677/9789241511575-eng.pdf
[37]  WHO (2013) Guidelines for Laboratory and Field Testing of Long-Lasting Insecticidal Mosquito Nets. World Health Organization, Geneva, WHO/HTM/NTD/ WHOPES/2013.1.
https://apps.who.int/iris/handle/10665/80270
[38]  Martinez-Torres, D., Chevillon, C., Brun-Barale, A., Bergé, J.B., Pasteur, N. and Pauron, D. (1999) Voltage-Dependent Na+ Channels in Pyrethroid-Resistant Culex pipiens L. Mosquitoes. Journal of Pest Science, 55, 1012-1020.
https://doi.org/10.1002/(SICI)1096-9063(199910)55:10<1012::AID-PS39>3.0.CO;2-5
[39]  Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marquine, M. and Raymond, M. (2004) The Unique Mutation in ace-1 Giving High Insecticide Resistance Is Easily Detectable in Mosquito Vectors. Insect Molecular Biology, 13, 1-7.
https://doi.org/10.1111/j.1365-2583.2004.00452.x
[40]  Hall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[41]  Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. and Sánchez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34, 3299-3302.
https://doi.org/10.1093/molbev/msx248
[42]  Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35, 1547-1549.
https://doi.org/10.1093/molbev/msy096
[43]  Abbott, W. (1925) A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18, 265-267.
https://doi.org/10.1093/jee/18.2.265a
[44]  Oguoma, V.M. and Ikpeze, O.O. (2008) Species Composition and Abundance of Mosquitoes of a Tropical Irrigation Ecosystem. Animal Research International, 5, 866-871.
https://doi.org/10.4314/ari.v5i2.48748
[45]  Rabi’u, H.M. and Ahmed, A. (2019) A Preliminary Study on the Abundance and Species Composition of Mosquitoes Breeding in Discarded Automobile Tyres in Minna, Niger State, Nigeria. International Journal of Mosquito Research, 6, 119-123.
[46]  Delannay, C., Goindin, D., Kellaou, K., Ramdini, C., Gustave, J. and Vega-Rua, A. (2018) Multiple Insecticide Resistance in Culex quinquefasciatus Populations from Guadeloupe (French West Indies) and Associated Mechanisms. PLoS ONE, 13, e0199615.
https://doi.org/10.1371/journal.pone.0199615
[47]  Aney, S.A., Ahmad, S., Akter, T. and Mostafa, M.G. (2018) Susceptibility of Third Instar Larvae of Culex quinquefasciatus Say (Culicidae: Insecta) against Some Commercial Organophosphate and Pyrethroid Insecticides. Jahangirnagar University Journal of Biological Sciences, 7, 21-32.
https://doi.org/10.3329/jujbs.v7i2.40744
[48]  Ukpai, O.M. and Ekedo, C.M. (2019) Insecticide Susceptibility Status of Culex quinquefasciatus (Diptera: Culicidae) in Umudike, Ikwuano LGA Abia State, Nigeria. International Journal of Mosquito Research, 6, 114-118.
[49]  Yadouléton, A., Badirou, K., Agbanrin, R., Agbanrin, R., Jöst, H., Attolou, R., Srinivasan, R., Padonou, G. and Akogbéto, M. (2015) Insecticide Resistance Status in Culex quinquefasciatus in Benin. Parasites & Vectors, 8, 17.
https://doi.org/10.1186/s13071-015-0638-3
[50]  Agbor, O.V., Idowu, T.E., Fagbohun, K.I., Oyeniyi, A.T., Jimoh, R.T. and Otubanjo, A.O. (2020) Molecular Identification and Insecticide Resistance Status of Culex Mosquitoes Collected from Blocked Drainages in Lagos State, Nigeria. Pan African Journal of Life Sciences, 4, 188-193.
https://doi.org/10.36108/pajols/0202/40(0110)

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133