全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可再生能源互补的微能源网运行优化研究
Research on Operation Optimization of Renewable Energy Complementary Micro Energy Network

DOI: 10.12677/DSC.2022.112009, PP. 77-85

Keywords: 微能源网系统,风光燃储,风光渗透率,非线性规划,运行优化
Micro-Energy Network System
, Wind-Light-Burning-Storage, Wind-Light Permeability, Nonlinear Programming, Operation Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

微能源网作为集能源互联、转化、耦合、存储等功能于一体的小型综合能源供应系统成为了研究热点。本文以可再生能源的最大消纳为目标,对包含风能、太阳能、生物质气/天然气、储能等多种能源结构的区域型微能源网系统运行优化问题进行了研究。建立了包含风光渗透率(Ratio of Electricity Permeability, REP)和弃风弃光率(Abandoning Ratio, AR)在内的运行优化问题。充分考虑风光发电、储能、燃气轮机发电机组等运行特点,建立了区域型微能源网目标函数模型,通过分支界定法获得最优解。经过运行优化后微能源网系统的弃风弃光率均接近于0,风光渗透率最高可达到35%左右。通过优化算例对上述模型进行计算分析,可以为微能源网系统的运行规划提供参考。
As a small integrated energy supply system integrating energy interconnection, conversion, coupling and storage, microenergy network has become a research hotspot. In order to maximize the consumption of renewable energy, this paper studies the operation optimization of regional micro energy grid system including wind, solar, biomass gas/natural gas, energy storage and other energy structures. The optimization problems including wind and light abandoning ratio (AR) and Ratio of Electricity Permeability (REP) were established. The objective function model of regional micro energy network was established, and the optimal solution was obtained by branch definition method. After operation optimization, the wind and light abandoning rate of the micro energy network system is close to 0, and the maximum wind and light abandoning rate of the micro energy network system is about 35%. The optimization example is used to calculate and analyze the above model, which can provide reference for the operation planning of micro-energy network system.

References

[1]  刘俊峰, 陈剑龙, 王晓生, 曾君, 黄倩颖. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10): 3794-3803.
[2]  2019年我国风电发电量首次突破4000亿千瓦时[EB/OL]. https://news.bjx.com.cn/html/20210111/1128476.shtml, 2021-01-11.
[3]  Ni, L., Feng, C., Wen, F., et al. (2016) Optimal Power Flow of Multiple Energy Carriers with Multiple Kinds of Energy Storage. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, 17-21 July 2016, 1-5.
[4]  Guandalini, G., Campanari, S., Romano, M.C., et al. (2015) Power-to-Gas Plants and Gas Turbines for Improved Wind Energy Dispatchability: Energy and Economic Assessment. Applied Energy, 147, 117-130.
https://doi.org/10.1016/j.apenergy.2015.02.055
[5]  曾鸣, 刘英新, 周鹏程, 王雨晴, 侯孟希. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42(6): 1697-1708.
[6]  马腾飞, 吴俊勇, 郝亮亮, 李玉君, 闫华光, 李德智, 陈宋宋. 基于能源集线器的微能源网能量流建模及优化运行分析[J]. 电网技术, 2018, 42(1): 179-186.
[7]  陈丽萍, 林晓明, 许苑, 李涛, 林琳, 黄春艳. 基于能源集线器的微能源网建模与多目标优化调度[J]. 电力系统保护与控制, 2019, 47(6): 9-16.
[8]  刘方泽, 牟龙华, 张涛, 朱彤. 微能源网多能源耦合枢纽的模型搭建与优化[J]. 电力系统自动化, 2018, 42(14): 91-98.
[9]  魏震波, 黄宇涵, 高红均, 税月. 含电转气和热电解耦热电联产机组的区域能源互联网联合经济调度[J]. 电网技术, 2018, 42(11): 3512-3520.
[10]  习近平在气候雄心峰会上的讲话[EB/OL]. http://www.gov.cn/xinwen/2020-12/13/content_5569138.htm, 2020-12-13.
[11]  刘明明, 崔春风, 童小娇, 戴彧虹. 混合整数非线性规划的算法软件及最新进展[J]. 中国科学(数学), 2016, 46(1): 1-20.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133