|
BP神经网络以及衍生方法对电池SOC预测的研究进展
|
Abstract:
电池荷电状态(SOC)的估算是电池管理系统衡量电池寿命的重要指标。精确的SOC估计在防止过充放电、提高电池利用率、保障电动汽车电池系统的安全性和稳定性方面具有重大的意义。SOC的估算主要有安时积分法,卡尔曼滤波法,开路电压法,神经网络等。安时积分法需要定期修改荷电状态,误差较大;卡尔曼滤波法是依据均方最小的误差原则,较高地依赖型的精确度;开路电压法电池须长时间的静置,而实际工况中电流值上下波动大,测量误差较大;神经网络具有强大的非线性映射能力,无需特别精准的数学模型,在实际的SOC估算具有非常重要的优势。本文主要针对BP神经网络及其衍生的方法做了概述,实践证明BP神经网络与其他算法结合是最有前景的,不仅能缩小误差,提高准确性,还能突出它强大的非线性拟合能力。
The Estimation of the SOC for batteries is an important indicator of the battery management system to measure the life of the batteries. Accurate SOC estimates are significant in preventing over charge and discharge, improving battery utilization, and ensuring the safety and stability of electric vehicle battery systems. The estimation of the SOC mainly has Ah integral method, Kalman filtering method, open circuit voltage method, neural network, etc. The Ah integral method needs to regu-larly modify the charged state, the error is large; the Karman filtering method is based on the minimum error principle, higher dependence; the open circuit voltage method must stand for a long time, and the actual work The current value is large, the measurement error is large; the neu-ral network has powerful nonlinear mapping capabilities, no special accurate mathematical model, is very important in the actual SOC estimation. This paper mainly provides an overview of the BP neural network and its derivatives, and practice of the BP neural network and other algorithms is the most promising, not only reduces the error, and improves accuracy, but also highlights its pow-erful nonlinear fitting capacity.
[1] | 李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报(自然科学版), 2010, 50(8): 1293-1296, 1301. |
[2] | 汪永志, 贝绍轶, 汪伟, 等. 基于粒子滤波算法的动力电池SOC估计[J]. 机械设计与制造工程, 2014, 43(10): 69-73. |
[3] | 杨文荣, 朱赛飞, 陈阳, 等. 基于改进安时积分法估计锂离子电池组SOC[J]. 电源技术, 2018, 42(2): 183-184+246. |
[4] | Xiong, R., He, H., Sun, F., et al. (2013) Evaluation on State of Charge Estimation of Batteries with Adaptive Extended Kalman Filter by Experiment Approach. IEEE Transactions on Vehicular Technology, 62, 108-117.
https://doi.org/10.1109/TVT.2012.2222684 |
[5] | 史峰, 王小川, 郁磊. MATLAB神经网络30个案例分析[M]. 北京: 航空航天大学出版社, 2011. |
[6] | 黄妙华, 严永刚, 朱立明. 改进BP神经网络的磷酸铁锂电池SOC估算[J]. 武汉理工大学学报(信息与管理工程版), 2014, 36(6): 790-793. |
[7] | 贾海峰, 李聪. 基于BP神经网络的锂电池组SOC估算[J]. 农业装备与车辆工程, 2020, 58(1): 105-108. |
[8] | 张传伟, 李林阳, 赵东刚. 基于BP神经网络法估算动力电池SOC[J]. 电源技术, 2017, 41(9): 1356-1368. |
[9] | 赵钢, 孙豪赛, 罗淑贞. 基于BP神经网络的动力电池SOC估算[J]. 电源技术, 2016, 40(4): 818-819. |
[10] | 任舒蕊, 王琪. 基于BAS-BP神经网络的动力电池SOC估算[J]. 自动化与仪表, 2021, 36(8): 87-91. |
[11] | 王帅, 马鸿雁, 窦嘉铭, 张英达, 李晟延, 胡璐锦. 基于UGOA-BP的锂电池SOC估算[J]. 储能科学与技术, 2022, 11(1): 258-264. |
[12] | 于仲安, 卢健, 王先敏. 基于GA-BP神经网络的锂离子电池SOC估计[J]. 电源技术, 2020, 44(3): 337-341. |
[13] | 张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241. |
[14] | Yan, Q. and Wang, Y. (2017) Predicting for Power Battery SOC Based on Neural Network. 2017 36th Chinese Control Conference, 26-28 July 2017, Dalian, China. https://doi.org/10.23919/ChiCC.2017.8028008 |
[15] | Saremi, S., Mirjalili, S. and Lewis, A. (2017) Grasshopper Optimization Algorithm: Theory and Application. Advances in Engineering Software, 105, 30-47. https://doi.org/10.1016/j.advengsoft.2017.01.004 |
[16] | Arora, S. and Anand, P. (2019) Chaotic Grasshopper Opti-mization Algorithm for Global Optimization. Neural Computing and Applications, 31, 4385-4405. https://doi.org/10.1007/s00521-018-3343-2 |
[17] | Ewees, A.A., Elaziz, M.A. and Houssein, E.H. (2018) Improved Grasshopper Optimization Algorithm Using Opposition- Based Learning. Expert Systems with Applications, 112, 56-172. https://doi.org/10.1016/j.eswa.2018.06.023 |