全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连接蛋白43与乳腺癌发生发展关系的研究进展
Research Progress in the Relationship between Connexin 43 and the Occurrence and Development of Breast Cancer

DOI: 10.12677/WJCR.2022.122011, PP. 81-89

Keywords: 乳腺癌,Cx43,转移,预后
Breast Cancer
, Cx43, Metastasis, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

乳腺癌在女性恶性肿瘤发生中占据首位,连接蛋白43在乳腺癌中存在异常表达,在乳腺癌的发生、发展过程中起着作用。本文主要讨论连接蛋白43在乳腺癌中的研究进展,探讨其在正常乳腺组织、乳腺癌原发灶及远处转移灶中的表达情况,为乳腺癌的治疗提供新的思路。
Breast cancer occupies the first place in the occurrence of female malignant tumors. Connexin 43 (Cx43) has abnormal expression in breast cancer, and plays a role in the occurrence and development of breast cancer. This article mainly discusses the research progress of Cx43 in breast cancer, and discusses its expression in normal breast tissue, primary breast cancer and distant metastasis, so as to provide new ideas for the treatment of breast cancer.

References

[1]  曹毛毛, 陈万青. GLOBOCAN 2020全球癌症统计数据解读[J]. 中国医学前沿杂志(电子版), 2021, 13(3): 63-69.
[2]  Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[3]  Li, T., Mello-Thoms, C. and Brennan, P.C. (2016) Descriptive Epidemiology of Breast Cancer in China: Incidence, Mortality, Survival and Prevalence. Breast Cancer Research & Treatment, 159, 395-406.
https://doi.org/10.1007/s10549-016-3947-0
[4]  王君, 卞修武, 余时沧. 间隙连接蛋白43羧基端在恶性肿瘤中的作用及机制[J]. 中国细胞生物学学报, 2015(3): 391-397.
[5]  罗海清, 官成浓, 余忠华, 王镇南, 梁亚海. Cx43和Fas在胃癌组织中的表达[J]. 山东医药, 2011, 51(44): 83-85.
[6]  Guo, L.I., Wang, J., Wu, C., et al. (2013) Expression of Cx43 in Human Lung Adenocarcinoma and Its Significance. Cancer Research and Clinic, No. 5, 303-305.
[7]  Poyet, C., Buser, L., Roudnicky, F., et al. (2015) Connexin 43 Expression Predicts Poor Progression-Free Survival in Patients with Non-Muscle Invasive Urothelial Bladder Cancer. Journal of Clinical Pathology, 68, 819-824.
https://doi.org/10.1136/jclinpath-2015-202898
[8]  冯洁, 周风华, 李文通, 张立英, 吕世军. 连接蛋白43与Snail在乳腺癌组织中的表达及意义[J]. 潍坊医学院学报, 2012, 34(3): 161-163.
[9]  Grek, C.L., Rhett, J.M. and Ghatnekar, G.S. (2014) Cardiac to Cancer: Connecting Connexins to Clinical Opportunity. FEBS Letters, 588, 1349-1364.
https://doi.org/10.1016/j.febslet.2014.02.047
[10]  Kumar, N.M. and Gilula, N.B. (1996) The Gap Junction Communication Channel. Cell, 84, 381-388.
https://doi.org/10.1016/S0092-8674(00)81282-9
[11]  Makowski, L., Caspar, D.L., Phillips, W.C. and Goodenough, D.A. (1977) Gap Junction Structures. II. Analysis of the X-Ray Diffraction Data. Journal of Cell Biology, 74, 629-645.
https://doi.org/10.1083/jcb.74.2.629
[12]  Rhett, J.M., Fann, S.A. and Yost, M.J. (2014) Purinergic Signaling in Early Inflammatory Events of the Foreign Body Response: Modulating Extracellular ATP as an Enabling Technology for Engineered Implants and Tissues. Tissue Engineering Part B: Reviews, 20, 392-402.
https://doi.org/10.1089/ten.teb.2013.0554
[13]  Ding, Y. and Nguyen, T.A. (2013) PQ1, A Quinoline Derivative, Induces Apoptosis in T47D Breast Cancer Cells through Activation of Caspase-8 and Caspase-9. Apoptosis, 18, 1071-1082.
https://doi.org/10.1007/s10495-013-0855-1
[14]  Ding, Y., Prasain, K., Nguyen, T.D., Hua, D.H. and Nguyen, T.A. (2012) The Effect of the PQ1 Anti-Breast Cancer Agent on Normal Tissues. Anti-Cancer Drugs, 23, 897-905.
https://doi.org/10.1097/CAD.0b013e328354ac71
[15]  Shishido, S.N., Delahaye, A., Beck, A. and Nguyen, T.A. (2014) The Anticancer Effect of PQ1 in the MMTV-PyVT Mouse Model. International Journal of Cancer, 134, 1474-1483.
https://doi.org/10.1002/ijc.28461
[16]  Grek, C.L., Rhett, J.M., Bruce, J.S., Abt, M.A., Ghatnekar, G.S. and Yeh, E.S. (2015) Targeting Connexin 43 with Alpha-Connexin Carboxyl-Terminal (ACT1) Peptide Enhances the Activity of the Targeted Inhibitors, Tamoxifen and Lapatinib, in Breast Cancer: Clinical Implication for ACT1. BMC Cancer, 15, Article No. 296.
https://doi.org/10.1186/s12885-015-1229-6
[17]  Grek, C.L., Matthew Rhett, J., Bruce, J.S., Ghatnekar, G.S. and Yeh, E.S. (2016) Connexin43, Breast Cancer Tumor Suppressor: Missed Connections? Cancer Letters, 374, 117-126.
https://doi.org/10.1016/j.canlet.2016.02.008
[18]  Wilgenbus, K.K., Kirkpatrick, C.J., Knuechel, R., Willecke, K. and Traub, O. (1992) Expression of Cx26, Cx32 and Cx43 Gap Junction Proteins in Normal and Neoplastic Human Tissues. International Journal of Cancer, 51, 522-529.
https://doi.org/10.1002/ijc.2910510404
[19]  Shipitsin, M., Campbell, L.L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, J., Nikolskaya, T., Serebryiskaya, T., Beroukhim, R., Hu, M., et al. (2007) Molecular Definition of Breast Tumor Heterogeneity. Cancer Cell, 11, 259- 273.
https://doi.org/10.1016/j.ccr.2007.01.013
[20]  Kanczuga-Koda, L., Sulkowska, M., Koda, M., Resze?, J., Famulski, W., Baltaziak, M. and Sulkowski, S. (2003) Expression of Connexin 43 in Breast Cancer in Comparison with Mammary Dysplasia and the Normal Mammary Gland. Folia Morphologica, 62, 439-442.
[21]  Jamieson, S., Going, J.J., D’Arcy, R. and George, W.D. (1998) Expression of Gap Junction Proteins Connexin 26 and Connexin 43 in Normal Human Breast and in Breast Tumours. The Journal of Pathology, 184, 37-43.
https://doi.org/10.1002/(SICI)1096-9896(199801)184:1<37::AID-PATH966>3.0.CO;2-D
[22]  Monaghan, P., Clarke, C., Perusinghe, N.P., Moss, D.W., Chen, X.Y. and Evans, W.H. (1996) Gap Junction Distribution and Connexin Expression in Human Breast. Experimental Cell Research, 223, 29-38.
https://doi.org/10.1006/excr.1996.0055
[23]  Pozzi, A., Risek, B., Kiang, D.T., Gilula, N.B. and Kumar, N.M. (1995) Analysis of Multiple Gap Junction Gene Products in the Rodent and Human Mammary Gland. Experimental Cell Research, 220, 212-219.
https://doi.org/10.1006/excr.1995.1308
[24]  Kanczuga-Koda, L., Sulkowski, S., Tomaszewski, J., Koda, M., Sulkowska, M., Przystupa, W., Golaszewska, J. and Baltaziak, M. (2005) Connexins 26 and 43 Correlate with Bak, But Not with Bcl-2 Protein in Breast Cancer. Oncology Reports, 14, 325-329.
https://doi.org/10.3892/or.14.2.325
[25]  Teleki, I., Szasz, A.m., maros, m.E., Gyorffy, B., Kulka, J., meggyeshazi, N., Kiszner, G., Balla, P., Samu, A. and Krenacs, T. (2014) Correlations of Differentially Expressed Gap Junction Connexins Cx26, Cx30, Cx32, Cx43 and Cx46 with Breast Cancer Progression and Prognosis. PLoS ONE, 9, e112541.
https://doi.org/10.1371/journal.pone.0112541
[26]  Tomasetto, C., Neveu, M.J., Daley, J., Horan, P.K. and Sager, R. (1993) Specificity of Gap Junction Communication among Human Mammary Cells and Connexin Transfectants in Culture. The Journal of Cell Biology, 122, 157-167.
https://doi.org/10.1083/jcb.122.1.157
[27]  Monaghan, P. and Moss, D. (1996) Connexin Expression and Gap Junctions in the Mammary Gland. Cell Biology International, 20, 121-125.
https://doi.org/10.1006/cbir.1996.0016
[28]  Plante, I. and Laird, D.W. (2008) Decreased Levels of connexin43 Result in Impaired Development of the Mammary Gland in a Mouse Model of Oculodentodigital Dysplasia. Developmental Biology, 318, 312-322.
https://doi.org/10.1016/j.ydbio.2008.03.033
[29]  Plante, I., Wallis, A., Shao, Q. and Laird, D.W. (2010) Milk Secretion and Ejection Are Impaired in the Mammary Gland of Mice Harboring a Cx43 Mutant While Expression and Localization of Tight and Adherens Junction Proteins Remain Unchanged. Biology of Reproduction, 82, 837-847.
https://doi.org/10.1095/biolreprod.109.081406
[30]  Stewart, M.K., Gong, X.Q., Barr, K.J., Bai, D., Fishman, G.I. and Laird, D.W. (2013) The Severity of Mammary Gland Developmental Defects Is Linked to the Overall Functional Status of Cx43 as Revealed by Genetically Modified Mice. Biochemical Journal, 449, 401-413.
https://doi.org/10.1042/BJ20121070
[31]  McLachlan, E., Shao, Q. and Laird, D.W. (2007) Connexins and Gap Junctions in Mammary Gland Development and Breast Cancer Progression. Journal of Membrane Biology, 218, 107-121.
https://doi.org/10.1007/s00232-007-9052-x
[32]  Wilson, M.R., Close, T.W. and Trosko, J.E. (2000) Cell Population Dynamics (Apoptosis, Mitosis, and Cell–Cell Communication) during Disruption of Homeostasis. Experimental Cell Research, 254, 257-268.
https://doi.org/10.1006/excr.1999.4771
[33]  Lambe, T., Finlay, D., Murphy, M. and Martin, F. (2006) Differential Expression of Connexin 43 in Mouse Mammary Cells. Cell Biology International, 30, 472-479.
https://doi.org/10.1016/j.cellbi.2006.02.008
[34]  Talhouk, R.S., Elble, R.C., Bassam, R., et al. (2005) Developmental Expression Patterns and Regulation of Connexins in the Mouse Mammary Gland: Expression of Connexin30 in Lactogenesis. Cell & Tissue Research, 319, 49-59.
https://doi.org/10.1007/s00441-004-0915-5
[35]  Yamanaka, I., Kuraoka, A., Inai, T., et al. (1997) Changes in the Phosphorylation States of Connexin43 in Myoepithelial Cells of Lactating Rat Mammary Glands. European Journal of Cell Biology, 72, 166-173.
[36]  Laird, D.W., Fistouris, P., Batist, G., Alpert, L., Huynh, H.T., Carystinos, G.D. and Alaoui-Jamali, M.A. (1999) Deficiency of Connexin43 Gap Junctions Is an Independent Marker for Breast Tumors. Cancer Res, 59, 4104-4110.
[37]  Chasampalioti, M., Green, A.R., Ellis, I.O., et al. (2019) Connexin 43 Is an Independent Predictor of Patient Outcome in Breast Cancer Patients. Breast Cancer Research and Treatment, 174, 93-102.
https://doi.org/10.1007/s10549-018-5063-9
[38]  周霖, 张钰萍, 何丽, 尤倩, 彭飞, 吴意. 乳腺癌组织中Cx43表达水平及其临床意义的Meta分析[J]. 中国现代医学杂志, 2018, 28(20): 108-116.
[39]  Kanczuga-Koda, L., Sulkowski, S., Lenczewski, A., et al. (2006) Increased Expression of Connexins 26 and 43 in Lymph Node Metastases of Breast Cancer. Journal of Clinical Pathology, 59, 429-433.
https://doi.org/10.1136/jcp.2005.029272
[40]  Elzarrad, M.K., Haroon, A., Willecke, K., Dobrowolski, R., Gillespie, M.N. and Al-Mehdi, A.B. (2008) Connexin-43 Upregulation in Micrometastases and Tumor Vasculature and Its Role in Tumor Cell Attachment to Pulmonary Endothelium. BMC Medicine, 6, Article No. 20.
https://doi.org/10.1186/1741-7015-6-20
[41]  Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. and Wells, A. (2012) Partial Mesenchymal to Epithelial Reverting Transition in Breast and Prostate Cancer Metastases. Cancer Microenvironment, 5, 19-28.
https://doi.org/10.1007/s12307-011-0085-4
[42]  Ito, A., Watabe, K., Koma, Y. and Kitamura, Y. (2002) An Attempt to Isolate Genes Responsible for Spontaneous and Experimental Metastasis in the Mouse Model. Histology and Histopathology, 17, 951-959.
[43]  Kamibayashi, Y., Oyamada, Y., Mori, M., et al. (1995) Aberrant Expression of Gapjunction Proteins (Connexins) Is Associated with Tumor Progression during Multistage Mouse Skin Carcinogenesis in Vivo. Carcinogenesis, 16, 1287-1297.
https://doi.org/10.1093/carcin/16.6.1287
[44]  张光谋, 徐振平, 张志谦, 胡颖. 间隙连接蛋白Cx43在乳腺癌组织中表达的研究[J]. 实用癌症杂志, 2002, 17(6): 594-596.
[45]  高一菁, 陈战, 李锐, 谢晓梅, 涂永久. 连接蛋白43和上皮细胞钙黏蛋白在乳腺浸润性导管癌组织中表达的意义[J]. 中华乳腺病杂志(电子版), 2012, 6(3): 279-286.
[46]  张立英, 周风华, 李文通, 冯洁, 吕世军. 连接蛋白43, Vimentin 联合检测与乳腺癌转移关系的研究[J]. 实用医学杂志, 2012, 28(24): 4099-4101.
[47]  张光谋, 徐振平, 张志谦, 胡颖. 乳腺癌中间隙连接蛋白Cx43和Cx26表达的意义[J]. 实用肿瘤杂志, 2002, 17(3): 170-172.
[48]  Fu, Y., Shao, Z.M., He, Q.Z., et al. (2015) Hsa-miR-206 Represses the Proliferation and Invasion of Breast Cancer Cells by Targeting Cx43. European Review for Medical and Pharmacological Sciences, 19, 2091-2104.
[49]  涂永久, 高一菁, 陈战, 李锐. 乳腺浸润性导管癌连接蛋白43和上皮性钙黏蛋白相关性研究[J]. 局解手术学杂志, 2014, 23(6): 586-588.
[50]  Godinho-Pereira, J., Garcia, A.R., Figueira, I., et al. (2021) Behind Brain Metastases Formation: Cellular and Molecular Alterations and Blood-Brain Barrier Disruption. International Journal of Molecular Sciences, 22, Article No. 7057.
https://doi.org/10.3390/ijms22137057
[51]  Figueira, I., Galego, S., Custódio-Santos, T., Vicente, R., Molnár, K., Haskó, J., Malhó, R., Videira, M., Wilhelm, I., Krizbai, I., et al. (2021) Picturing Breast Cancer Brain Metastasis Development to Unravel Molecular Players and Cellular Crosstalk. Cancers, 13, Article No. 910.
https://doi.org/10.3390/cancers13040910
[52]  Bellahcène, A., Bachelier, R., Detry, C., et al. (2007) Transcriptome Analysis Reveals an Osteoblast-Like Phenotype for Human Osteotropic Breast Cancer Cells. Breast Cancer Research and Treatment, 101, 135-148.
https://doi.org/10.1007/s10549-006-9279-8
[53]  Plante, I., Stewart, M.K., Barr, K., Allan, A.L. and Laird, D.W. (2011) Cx43 Suppresses Mammary Tumor Metastasis to the Lung in a Cx43 Mutant Mouse Model of Human Disease. Oncogene, 30, 1681-1692.
https://doi.org/10.1038/onc.2010.551
[54]  Lye, S.J., Nicholson, B.J., Mascarenhas, M., MacKenzie, L. and Petrocelli, T (1993) Increased Expression of Connexin-43 in the Rat Myometrium during Labor Is Associated with an Increase in the Plasma Estrogen: Progesterone Ratio. Endocrinology, 132, 2380-2386.
https://doi.org/10.1210/endo.132.6.8389279
[55]  Firestone, G.L. and Kapadia, B.J. (2012) Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands. Molecular Endocrinology, 26, 1798-1807.
https://doi.org/10.1210/me.2012-1065
[56]  Conklin, C., Huntsman, D., Yorida, E., et al. (2007) Tissue Microarray Analysis of Connexin Expression and Its Prognostic Significance in Human Breast Cancer. Cancer Letters, 255, 284-294.
https://doi.org/10.1016/j.canlet.2007.05.001
[57]  Teleki, I., Krenacs, T., Szasz, M.A., Kulka, J., Wichmann, B., Leo, C., Papassotiropoulos, B., Riemenschnitter, C., moch, H. and varga, Z. (2013) The Potential Prognostic Value of Connexin 26 and 46 Expression in Neoadjuvant- Treated Breast Cancer. BMC Cancer, 13, Article No. 50.
https://doi.org/10.1186/1471-2407-13-50
[58]  Oyamada, M., Oyamada, Y. and Takamatsu, T (2005) Regulation of Connexin Expression. Biochimica et Biophysica Acta, 1719, 6-23.
https://doi.org/10.1016/j.bbamem.2005.11.002
[59]  Renoir, J.M., Marsaud, V. and Lazennec, G. (2013) Estrogen Receptor Signaling as a Target for Novel Breast Cancer Therapeutics. Biochemical Pharmacology, 85, 449-465.
https://doi.org/10.1016/j.bcp.2012.10.018
[60]  Stoletov, K., Strnadel, J., Zardouzian, E., momiyama, m., Park, F.D., Kelber, J.A., Pizzo, D.P., Hoffman, R., vandenBerg, S.R. and Klemke, R.L. (2013) Role of Connexins in Metastatic Breast Cancer and Melanoma Brain Colonization. Journal of Cell Science, 126, 904-913.
https://doi.org/10.1242/jcs.112748

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413