|
CO氧化反应催化剂的研究进展
|
Abstract:
本文主要讨论了用于CO催化氧化反应的催化剂,从金属氧化物催化剂,贵金属催化剂和单原子催化剂三个方面进行介绍。金属氧化物催化剂对CO氧化反应有一定的催化活性,但催化活性不高;相比于金属氧化物催化剂,贵金属催化剂的催化活性更好,但金属利用率不高,造成资源浪费;单原子催化剂的出现有效地解决了上述问题,为CO氧化反应的高效进行提供了基础。
This paper mainly discusses the catalysts used for CO catalytic oxidation, from three aspects: metal oxide catalysts, noble metal catalysts and single-atom catalysts. Metal oxide catalysts have a cer-tain catalytic activity for CO oxidation, but the catalytic activity is low; compared with metal oxide catalysts, noble metal catalysts have better catalytic activity, but the metal utilization rate is low, resulting in waste of resources. The emergence of single-atom catalysts effectively solves the above problems and provides a basis for the efficient CO oxidation reaction.
[1] | World Health Organization (2009) Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. World Health Organization, Geneva. |
[2] | Wang, F., Li, W., Feng, X., et al. (2016) Decoration of Pt on Cu/Co Double-Doped CeO2 Nanospheres and Their Greatly Enhanced Catalytic Activity. Chemical Science, 7, 1867-1873. https://doi.org/10.1039/C5SC04069H |
[3] | Wang, L., Yin, G., Yang, Y., et al. (2019) Enhanced CO Oxidation and Toluene Oxidation on CuCeZr Catalysts Derived from UiO-66 Metal Organic Frameworks. Reaction Kinetics, Mechanisms and Catalysis, 128, 193-204.
https://doi.org/10.1007/s11144-019-01623-8 |
[4] | Colls, J. (2001) Monitoring Ambient Air Quality for Health Impact Assessment. WHO Regional Publications, European Series: No 85 xvii 196 pp., 24.0 × 16.0 × 1.2 cm, ISBN 92 890 1351 6 Paperback, GB £30.00, Copenhagen, Denmark: WHO 1999. Environmental Conservation, 28, 86-94. https://doi.org/10.1017/S0376892901290080 |
[5] | Varon, J., Marik, P.E., Fromm Jr., R.E., et al. (1999) Carbon Monoxide Poisoning: A Review for Clinicians. The Journal of Emergency Medicine, 17, 7-93. https://doi.org/10.1016/S0736-4679(98)00128-0 |
[6] | Li, S., Lin, Y., Wang, D., et al. (2021) Polyhedral Cobalt Oxide Supported Pt Nanoparticles with Enhanced Performance for Toluene Catalytic Oxidation. Chemosphere, 263, Article ID: 127870.
https://doi.org/10.1016/j.chemosphere.2020.127870 |
[7] | Zeng, K., Wang, Z., Wang, D., et al. (2021) Three-Dimensionally Ordered Macroporous MnSmOx Composite Oxides for Propane Combustion: Modification Effect of Sm Dopant. Catalysis Today, 376, 211-221.
https://doi.org/10.1016/j.cattod.2020.05.043 |
[8] | Zhang, X., Yang, Y., Zhu, Q., et al. (2021) Unraveling the Effects of Potassium Incorporation Routes and Positions on Toluene Oxidation over α-MnO2 Nanorods: Based on Experimental and Density Functional Theory (DFT) Studies. Journal of Colloid and Interface Science, 598, 324-338. https://doi.org/10.1016/j.jcis.2021.04.053 |
[9] | Zhou, Y., Wang, Z. and Liu, C. (2015) Perspective on CO Oxidation over Pd-Based Catalysts. Catalysis Science & Technology, 5, 69-81. https://doi.org/10.1039/C4CY00983E |
[10] | Lin, J., Wang, X. and Zhang, T. (2016) Recent Progress in CO Oxidation over Pt-Group-Metal Catalysts at Low Temperatures. Chinese Journal of Catalysis, 37, 1805-1813. https://doi.org/10.1016/S1872-2067(16)62513-5 |
[11] | Feng, C., Liu, X., Zhu, T., et al. (2021) Catalytic Oxida-tion of CO on Noble Metal-Based Catalysts. Environmental Science and Pollution Research, 28, 24847-24871. https://doi.org/10.1007/s11356-021-13008-3 |
[12] | Di Benedetto, A., Landi, G., Lisi, L., et al. (2013) Role of CO2 on CO Preferential Oxidation over CuO/CeO2 Catalyst. Applied Catalysis B: Environmental, 142-143, 169-177. https://doi.org/10.1016/j.apcatb.2013.05.001 |
[13] | Zhang, X., Hou, F., Yang, Y., et al. (2017) A Facile Syn-thesis for Cauliflower Like CeO2 Catalysts from Ce-BTC Precursor and Their Catalytic Performance for CO Oxida-tion. Applied Surface Science, 423, 771-779.
https://doi.org/10.1016/j.apsusc.2017.06.235 |
[14] | Liu, X., Wang, K., Zhou, Y., et al. (2019) In-Situ Fabrication of Noble Metal Modified (Ce, Zr)O2?δ Monolithic Catalysts for CO Oxidation. Applied Surface Science, 483, 721-729. https://doi.org/10.1016/j.apsusc.2019.03.315 |
[15] | Sarkodie, B., Hu, Y., Bi, W., et al. (2021) Promotional Ef-fects of CuxO on the Activity of Cu/ZnO Catalyst toward Efficient CO Oxidation. Applied Surface Science, 548, Article ID: 149241. https://doi.org/10.1016/j.apsusc.2021.149241 |
[16] | Qiao, B., Wang, A., Yang, X., et al. (2011) Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx. Nature Chemistry, 3, 634-641. https://doi.org/10.1038/nchem.1095 |
[17] | Bielański, A. and Najbar, M. (1997) V2O5-MoO3 Catalysts for Ben-zene Oxidation. Applied Catalysis A: General, 157, 223-261. https://doi.org/10.1016/S0926-860X(97)00018-5 |
[18] | Hirashima, H., Watanabe, Y. and Yoshida, T. (1987) Switching of TiO2-V2O5-P2O5 Glasses. Journal of Non-Crystalline Solids, 95-96, 825-832. https://doi.org/10.1016/S0022-3093(87)80687-7 |
[19] | Yang, S., Iglesia, E. and Bell, A.T. (2005) Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural Characterization and Cata-lytic Function. The Journal of Physical Chemistry B, 109, 8987-9000. https://doi.org/10.1021/jp040708q |
[20] | Luo, M.-F., Zhong, Y.-J., Yuan, X.-X., et al. (1997) TPR and TPD Studies of CuOCeO2 Catalysts for Low Temperature CO Oxidation. Applied Catalysis A: General, 162, 121-131. https://doi.org/10.1016/S0926-860X(97)00089-6 |
[21] | Huang, J., Wang, S., Zhao, Y., Wang, X., Wang, S., Wu, S., et al. (2006) Synthesis and Characterization of CuO/TiO2 Catalysts for Low-temperature CO Oxidation. Catalysis Communications, 7, 1029-1034.
https://doi.org/10.1016/j.catcom.2006.05.001 |
[22] | Jansson, J., Palmqvist, A.E., Fridell, E., et al. (2002) On the Catalytic Activity of Co3O4 in Low-Temperature CO Oxidation. Journal of Catalysis, 211, 387-397. https://doi.org/10.1016/S0021-9517(02)93738-3 |
[23] | Xie, X., Li, Y., Liu, Z.-Q., et al. (2009) Low-Temperature Oxidation of CO Catalysed by CO3O4 Nanorods. Nature, 458, 746-749. https://doi.org/10.1038/nature07877 |
[24] | Mergler, Y., Van Aalst, A., Van Delft, J., et al. (1996) CO Oxidation over Promoted Pt Catalysts. Applied Catalysis B: Environmental, 10, 245-261. https://doi.org/10.1016/S0926-3373(96)00017-3 |
[25] | Xu, J., White, T., Li, P., et al. (2010) Biphasic Pd-Au Alloy Catalyst for Low-Temperature CO Oxidation. Journal of the American Chemical Society, 132, 10398-10406. https://doi.org/10.1021/ja102617r |
[26] | Qadir, K., Joo, S.H., Mun, B.S., et al. (2012) Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS. Nano Letters, 12, 5761-5768.
https://doi.org/10.1021/nl303072d |
[27] | Qiao, B., Lin, J., Wang, A., et al. (2015) Highly Active Au1/Co3O4 Single-Atom Catalyst for CO Oxidation at Room Temperature. Chinese Journal of Catalysis, 36, 1505-1511. https://doi.org/10.1016/S1872-2067(15)60889-0 |
[28] | Han, B., Lang, R., Tang, H., et al. (2019) Superior Ac-tivity of Rh1/ZnO Single-Atom Catalyst for CO Oxidation. Chinese Journal of Catalysis, 40, 1847-1853. https://doi.org/10.1016/S1872-2067(19)63411-X |
[29] | Muravev, V., Spezzati, G., Su, Y.-Q., et al. (2021) In-terface Dynamics of Pd–CeO2 Single-Atom Catalysts during CO Oxidation. Nature Catalysis, 4, 469-478. https://doi.org/10.1038/s41929-021-00621-1 |