全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2022 

影响胰岛素抵抗的多种因素
Multiple Factors Affecting Insulin Resistance

DOI: 10.12677/BP.2022.122005, PP. 33-39

Keywords: 胰岛素抵抗,运动,维生素D,昼夜节律
Insulin Resistance
, Exercise, Vitamin D, Circadian Rhythm

Full-Text   Cite this paper   Add to My Lib

Abstract:

在现代社会中,肥胖率和2型糖尿病的患病率都飞速增长,因此这两种病症的发病原因得到了广泛的关注。经过许多实验研究发现,胰岛素抵抗是引发这类疾病的一个重要原因,同时也是加重病症的因素之一。为从源头上减少肥胖、2型糖尿病等疾病的发病率,引起胰岛素抵抗的各种影响因素就成为了研究热点。本文综述了多种与胰岛素抵抗相关的因素,包括运动、维生素D、昼夜节律等,能够为开发治疗胰岛素抵抗的药物起到参考作用,也可为在日常生活中如何预防胰岛素抵抗指明方向。
In modern society, the prevalence of obesity and type 2 diabetes is increasing rapidly, so the causes of these two diseases have received extensive attention. After many experimental studies, it has been found that insulin resistance is an important cause of these diseases, and it is also one of the factors that aggravate the disease. In order to reduce the incidence of obesity, type 2 diabetes and other diseases from the source, various factors that cause insulin resistance have become the focus of research. This article reviews a variety of factors related to insulin resistance, including exercise, vitamin D, circadian rhythm, etc., which can serve as a reference for the development of drugs for the treatment of insulin resistance, and can also point out how to prevent insulin resistance in daily life.

References

[1]  Himsworth, H. (2014) Diabetes Mellitus: Its Differentiation into Insulin-Sensitive and Insulin-Insensitive Types. Inter-national Journal of Epidemiology, 42, 1594-1598.
https://doi.org/10.1093/ije/dyt203
[2]  Cr, K. (1978) Insulin Re-sistance, Insulin Insensitivity, and Insulin Unresponsiveness: A Necessary Distinction. Metabolism, 27, 1893-1902.
https://doi.org/10.1016/S0026-0495(78)80007-9
[3]  Kahn, S.E. (2003) The Relative Contributions of Insulin Re-sistance and Beta-Cell Dysfunction to the Pathophysiology of Type 2 Diabetes. Diabetologia, 46, 3-19.
https://doi.org/10.1007/s00125-002-1009-0
[4]  Kahn, S.E., Hull, R.L. and Utzschneider, K.M. (2006) Mecha-nisms Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nature, 444, 840-846.
https://doi.org/10.1038/nature05482
[5]  Olefsky, J. and Scarlett, J.A. (1982) Insulin Action and Resistance in Obesity and Noninsulin-Dependent Type II Diabetes Mellitus. American Journal of Physiology-Endocrinology and Me-tabolism, 243, E15-E30.
https://doi.org/10.1152/ajpendo.1982.243.1.E15
[6]  Gm, R. (1988) Role of Insulin Resistance in Human Disease. Diabetes, 37, 1595-1607.
https://doi.org/10.2337/diab.37.12.1595
[7]  Czech, M.P. (2017) Insulin Action and Resistance in Obesity and Type 2 Diabetes. Nature Medicine, 23, 804-814.
https://doi.org/10.1038/nm.4350
[8]  Petersen, K.F., Befroy, D., Lehrke, M., Hendler, R.E. and Shulman, G.I. (2005) Reversal of Nonalcoholic Hepatic Steatosis, Hepatic Insulin Resistance, and Hyperglycemia by Moderate Weight Reduction in Patients with Type 2 Diabetes. Diabetes, 54, 603-608.
https://doi.org/10.2337/diabetes.54.3.603
[9]  da Silva, A.A., do Carmo, J.M., Li, X., et al. (2020) Role of Hyper-insulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Canadian Journal of Cardiology, 36, 671-682.
https://doi.org/10.1016/j.cjca.2020.02.066
[10]  Petersen, M.C. and Shulman, G.I. (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews, 98, 2133-2223.
https://doi.org/10.1152/physrev.00063.2017
[11]  Perseghin, G., Price, T.B., Petersen, K.F., et al. (1996) Increased Glucose Transport-Phosphorylation and Muscle Glycogen Synthesis after Exercise Training in Insulin-Resistant Subjects. The New England Journal of Medicine, 335, 1357-1362.
https://doi.org/10.1056/NEJM199610313351804
[12]  Bergman, B.C., Brozinick, J.T., Strauss, A., et al. (2016) Muscle Sphingolipids during Rest and Exercise: A C18:0 Signature for Insulin Resistance in Humans. Diabetologia, 59, 785-798.
https://doi.org/10.1007/s00125-015-3850-y
[13]  Cartee, G.D. and Holloszy, J.O. (1990) Exercise In-creases Susceptibility of Muscle Glucose Transport to Activation by Various Stimuli. American Journal of Physiolo-gy-Endocrinology and Metabolism, 258, E390-E393.
https://doi.org/10.1152/ajpendo.1990.258.2.E390
[14]  Malin, S.K., Hinnerichs, K.R., Echtenkamp, B.G., et al. (2013) Effect of Adiposity on Insulin Action after Acute and Chronic Resistance Exercise in Non-Diabetic Women. Eu-ropean Journal of Applied Physiology, 113, 2933-2941.
https://doi.org/10.1007/s00421-013-2725-5
[15]  Shepherd, S.O., Cocks, M., Tipton, K.D., et al. (2014) Resistance Training Increases Skeletal Muscle Oxidative Capacity and Net Intramuscular Triglyceride Breakdown in Type I and II Fibres of Sedentary Males. Experimental Physiology, 99, 894-908.
https://doi.org/10.1113/expphysiol.2014.078014
[16]  Richter, E.A., Galbo, H., Kiens, B., et al. (1989) Effect of Exercise on Insulin Action in Human Skeletal Muscle. Journal of Applied Physiology, 66, 876-885.
https://doi.org/10.1152/jappl.1989.66.2.876
[17]  Friedman, J.E., Reed, M.J., Elton, C.W., Dohm, G.L., et al. (1990) Exercise Training Increases Glucose Transporter Protein GLUT-4 in Skeletal Muscle of Obese Zucker (fa/fa) Rats. FEBS Letters, 268, 13-16.
https://doi.org/10.1016/0014-5793(90)80960-Q
[18]  Poehlman, E.T., DeNino, W.F., Brochu, M., Ades, P.A., et al. (2000) Effects of Resistance Training and Endurance Training on Insulin Sensitivity in Nonobese, Young Women: A Controlled Randomized Trial. The Journal of Clinical Endocrinology & Metabolism, 85, 2463-2468.
https://doi.org/10.1210/jc.85.7.2463
[19]  Sparks, L.M., Johannsen, N.M., Church, T.S., et al. (2013) Nine Months of Combined Training Improves ex Vivo Skeletal Muscle Metabolism in Individuals with Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 98, 1694-1702.
https://doi.org/10.1210/jc.2012-3874
[20]  Shepherd, S.O., Cocks, M., Meikle, P.J., et al. (2017) Lipid Droplet Remodelling and Reduced Muscle Ceramides Following Sprint In-terval and Moderate-Intensity Continuous Exercise Training in Obese Males. International Journal of Obesity, 41, 1745-1754.
https://doi.org/10.1038/ijo.2017.170
[21]  Bergman, B.C., Perreault, L., Hunerdosse, D.M., et al. (2010) Increased Intramuscular Lipid Synthesis and Low Saturation Relate to Insulin Sensitivity in Endurance-Trained Athletes. Journal of Applied Physiology, 108, 1134-1141.
https://doi.org/10.1152/japplphysiol.00684.2009
[22]  Bruce, C.R., Thrush, A.B., Mertz, V.A., et al. (2006) En-durance Training in Obese Humans Improves Glucose Tolerance and Mitochondrial Fatty Acid Oxidation and Alters Muscle Lipid Content. American Journal of Physiology-Endocrinology and Metabolism, 291, E99-E107.
https://doi.org/10.1152/ajpendo.00587.2005
[23]  Amati, F., Dubé, J.J., Alvarez-Carnero, E., et al. (2011) Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance. Diabetes, 60, 2588-2597.
https://doi.org/10.2337/db10-1221
[24]  Cauza, E., Hanusch-Enserer, U., Strasser, B., et al. (2005) The Relative Benefits of Endurance and Strength Training on the Metabolic Factors and Muscle Function of People with Type 2 Dia-betes Mellitus. Archives of Physical Medicine and Rehabilitation, 86, 1527-1533.
https://doi.org/10.1016/j.apmr.2005.01.007
[25]  Szymczak-Pajor, I. and Sliwinska, A. (2019) Analysis of Associa-tion between Vitamin D Deficiency and Insulin Resistance. Nutrients, 11, 794.
https://doi.org/10.3390/nu11040794
[26]  Kumar, P.T., Antony, S., Nandhu, M.S., et al. (2011) Vitamin D3 Re-stores Altered Cholinergic and Insulin Receptor Expression in the Cerebral Cortex and Muscarinic M3 Receptor Expres-sion in Pancreatic Islets of Streptozotocin Induced Diabetic Rats. Journal of Nutritional Biochemistry, 22, 418-425.
https://doi.org/10.1016/j.jnutbio.2010.03.010
[27]  Rasgon, N. and Jarvik, L. (2004) Insulin Resistance, Affective Disorders, and Alzheimer’s Disease: Review and Hypothesis. Journals of Gerontology Series A: Biological Sciences and Medical Science, 59, 178-183.
https://doi.org/10.1093/gerona/59.2.M178
[28]  Guareschi, Z.M., Valcanaia, A.C., Ceglarek, V.M., et al. (2019) The Effect of Chronic Oral Vitamin D Supplementation on Adiposity and Insulin Secretion in Hypothalamic Obese Rats. British Journal of Nutrition, 121, 1334-1344.
https://doi.org/10.1017/S0007114519000667
[29]  Upreti, V., Maitri, V., Dhull, P., et al. (2018) Effect of Oral Vitamin D Supplementation on Glycemic Control in Patients with Type 2 Diabetes Mellitus with Coexisting Hypovita-minosis D: A Parellel Group Placebo Controlled Randomized Controlled Pilot Study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 12, 509-512.
https://doi.org/10.1016/j.dsx.2018.03.008
[30]  El Hajj, C.C., Boirie, Y., Yammine, K., Helou, M., Walrand, S., et al. (2018) Effect of Vitamin D Treatment on Glucose Homeostasis and Metabolism in Lebanese Older Adults: A Ran-domized Controlled Trial. The Journal of Nutrition, Health and Aging, 22, 1128-1132.
https://doi.org/10.1007/s12603-018-1083-8
[31]  Norman, A.W.F., Heldt, A.M., Grodsky, G.M., et al. (1980) Vitamin D Deficiency Inhibits Pancreatic Secretion of Insulin. Science, 209, 823-825.
https://doi.org/10.1126/science.6250216
[32]  Cade, C. and Norman, A.W. (1986) Vitamin D3 Improves Impaired Glucose Tolerance and Insulin Secretion in the Vitamin D-Deficient Rat in Vivo. Endocrinology, 119, 84-90.
https://doi.org/10.1210/endo-119-1-84
[33]  Tanaka, Y., Seino, Y, Ishida, M., Yamaoka, K., Yabuuchi, H., Ishida, H., Seino, S., Seino, Y. and Imura, H. (1984) Effect of Vitamin D3 on the Pancreatic Secretion of Insulin and Somatosta-tin. Acta Endocrinologica, 105, 528-533.
https://doi.org/10.1530/acta.0.1050528
[34]  Chertow, B.S., Baranetsky, N.G., Clark, S.A., Waite, A., Deluca, H.F., et al. (1983) Cellular Mechanisms of Insulin Release: The Effects of Vitamin D Deficiency and Repletion on Rat Insulin Secretion. Endocrinology, 113, 1511-1518.
https://doi.org/10.1210/endo-113-4-1511
[35]  Johnson, J.A., Roche, P.C., Kumar, R., et al. (1994) Immunohisto-chemical Localization of the 1,25(OH)2D3 Receptor and Calbindin D28k in Human and Rat Pancreas. American Journal of Physiology, 267, E356-E360.
https://doi.org/10.1152/ajpendo.1994.267.3.E356
[36]  Nyomba, B.L., Bormans, V., Peeters, T.L., Pelemans, W., Reynaert, J., Bouillon, R., Vantrappen, G., De Moor, P., et al. (1986) Pancreatic Secretion in Man with Subclinical Vita-min D Deficiency. Diabetologia, 29, 34-38.
https://doi.org/10.1007/BF02427278
[37]  Al-Shoumer, K.A.S. (2015) Is There a Relationship between Vitamin D with Insulin Resistance and Diabetes Mellitus? World Journal of Diabetes, 6, 1057-1064.
https://doi.org/10.4239/wjd.v6.i8.1057
[38]  Bland, R., Markovic, D., Hills, C.E., et al. (2004) Expression of 25-Hydroxyvitamin D3-1α-hydroxylase in Pancreatic Islets. The Journal of Steroid Biochemistry and Molecular Biology, 89-90, 121-125.
https://doi.org/10.1016/j.jsbmb.2004.03.115
[39]  Zeitz, U., Soegiarto, D.W., Wolf, E., Balling, R., Erben, R.G., et al. (2003) Impaired Insulin Secretory Capacity in Mice Lacking a Functional Vitamin D Receptor. The FASEB Journal, 17, 509-511.
https://doi.org/10.1096/fj.02-0424fje
[40]  Reusch, J., Sussman, K.E., Draznin, B., et al. (1991) Regulation of GLUT-4 Phosphorylation by Intracellular Calcium in Adipocytes. Endocrinology, 129, 3269-3273.
https://doi.org/10.1210/endo-129-6-3269
[41]  Stenvers, D.J., Scheer, F., Schrauwen, P., et al. (2019) Circadian Clocks and Insulin Resistance. Nature Reviews Endocrinology, 15, 75-89.
https://doi.org/10.1038/s41574-018-0122-1
[42]  Jarrett, R.J. and Keen, H. (1969) Diurnal Variation of Oral Glu-cose Tolerance: A Possible Pointer to the Evolution of Diabetes Mellitus. British Medical Journal, 2, 341-344.
https://doi.org/10.1136/bmj.2.5653.341
[43]  Bass, J. and Takahashi, J.S. (2010) Circadian Integration of Metabo-lism and Energetics. Science, 330, 1349-1354.
https://doi.org/10.1126/science.1195027
[44]  Marcheva, B., Ramsey, K.M., Buhr, E.D., et al. (2010) Disruption of the Clock Components CLOCK and BMAL1 Leads to Hypoinsulinaemia and Diabetes. Nature, 466, 627-631.
https://doi.org/10.1038/nature09253
[45]  Sadacca, L.A., Lamia, K.A., deLemos, A.S., et al. (2010) An Intrinsic Circadian Clock of the Pancreas Is Required for Normal Insulin Release and Glucose Homeostasis in Mice. Diabetologia, 54, 120-124.
https://doi.org/10.1007/s00125-010-1920-8
[46]  Jacobi, D., Liu, S., Burkewitz, K., et al. (2015) Hepatic Bmal1 Regulates Rhythmic Mitochondrial Dynamics and Promotes Metabolic Fitness. Cell Metabolism, 22, 709-720.
https://doi.org/10.1016/j.cmet.2015.08.006
[47]  Harfmann, B.D., Schroder, E.A., Kachman, M.T., et al. (2016) Muscle-Specific Loss of Bmal1 Leads to Disrupted Tissue Glucose Metabolism and Systemic Glucose Homeostasis. Skeletal Muscle, 6, 12.
https://doi.org/10.1186/s13395-016-0082-x
[48]  Czeisler, C.A., Weitzman, E., Moore-Ede, M.C., Zimmerman, J.C. and Knauer, R.S. (1980) Human Sleep: Its Duration and Organization Depend on Its Circadian Phase. Science, 210, 1264-1267.
https://doi.org/10.1126/science.7434029
[49]  Oishi, K., Atsumi, G., Sugiyama, S., et al. (2006) Dis-rupted Fat Absorption Attenuates Obesity Induced by a High-Fat Diet in Clock Mutant Mice. FEBS Letters, 580, 127-130.
https://doi.org/10.1016/j.febslet.2005.11.063
[50]  Zani, F., Breasson, L., Becattini, B., et al. (2013) PER2 Promotes Glucose Storage to Liver Glycogen during Feeding and Acute Fasting by Inducing Gys2 PTG and GL Expres-sion. Molecular Metabolism, 2, 292-305.
https://doi.org/10.1016/j.molmet.2013.06.006
[51]  Stenvers, D.J., van Dorp, R., Foppen, E., et al. (2016) Dim Light at Night Disturbs the Daily Sleep-Wake Cycle in the Rat. Scientific Reports, 6, Article No. 35662.
https://doi.org/10.1038/srep35662
[52]  Sapolsky, R.M. (1996) Stress, Glucocorticoids, and Damage to the Nerv-ous System: The Current State of Confusion. Stress, 1, 1-16.
https://doi.org/10.3109/10253899609001092
[53]  Leonard, B.E. (2018) Chronic Inflammation and Resulting Neu-roprogression in Major Depression. In: Kim, Y.-K., Ed., Understanding Depression, Springer, Berlin, 191-196.
https://doi.org/10.1007/978-981-10-6580-4_16
[54]  Mergenthaler, P., Lindauer, U., Dienel, G.A., et al. (2013) Sugar for the Brain: The Role of Glucose in Physiological and Pathological Brain Function. Trends in Neurosciences, 36, 587-597.
https://doi.org/10.1016/j.tins.2013.07.001
[55]  Winokur, A.M.G., Phillips, J.L. and Amsterdam, J.D. (1988) Insulin Resistance after Oral Glucose Tolerance Testing in Patients with Major Depression. American Journal of Psychiatry, 145, 325-330.
https://doi.org/10.1176/ajp.145.3.325
[56]  Hamer, J.A., Testani, D., Mansur, R.B., et al. (2019) Brain Insulin Re-sistance: A Treatment Target for Cognitive Impairment and Anhedonia in Depression. Experimental Neurology, 315, 1-8.
https://doi.org/10.1016/j.expneurol.2019.01.016
[57]  Kessing, L., Jorgensen, O.S., Bolwig, T.G., et al. (1996) Cognitive Impairment in Affective Disorders—Relation to Illness Characteristics. Nordic Journal of Psychiatry, 50, 305-316.
https://doi.org/10.3109/08039489609078171
[58]  Werner, H. and LeRoith, D. (2014) Insulin and Insu-lin-Like Growth Factor Receptors in the Brain: Physiological and Pathological Aspects. European Neuropsychophar-macology, 24, 1947-1953.
https://doi.org/10.1016/j.euroneuro.2014.01.020
[59]  Zhao, W.-Q., et al. (2001) Role of Insulin and Insulin Re-ceptor in Learning and Memory. Molecular and Cellular Endocrinology, 177, 125-134.
https://doi.org/10.1016/S0303-7207(01)00455-5
[60]  Vetere, A., Choudhary, A., Burns, S.M., et al. (2014) Tar-geting the Pancreatic β-Cell to Treat Diabetes. Nature Reviews Drug Discovery, 13, 278-289.
https://doi.org/10.1038/nrd4231
[61]  Tang, C., Du, J., et al. (2006) Hydrogen Sulfide as a New Endogenous Gas-eous Transmitter in the Cardiovascular System. Current Vascular Pharmacology, 4, 17-22.
https://doi.org/10.2174/157016106775203144
[62]  Kimura, H. (2014) The Physiological Role of Hydrogen Sulfide and Beyond. Nitric Oxide, 41, 4-10.
https://doi.org/10.1016/j.niox.2014.01.002
[63]  Suzuki, K., Sagara, M., Aoki, C., et al. (2017) Clinical Implication of Plasma Hydrogen Sulfide Levels in Japanese Patients with Type 2 Diabetes. Internal Medicine, 56, 17-21.
https://doi.org/10.2169/internalmedicine.56.7403
[64]  Jiang, J., Chan, A., Ali, S., et al. (2016) Hydrogen Sul-fide—Mechanisms of Toxicity and Development of an Antidote. Scientific Reports, 6, Article No. 20831.
https://doi.org/10.1038/srep20831
[65]  Warram, J.H., Martin, B.C., Krolewski, A.S., Soeldner, J.S. and Kahn, C.R. (1990) Slow Glucose Removal Rate and Hyperinsulinemia Precede the Development of Type II Diabetes in the Offspring of Diabetic Parents. Annals of Internal Medicine, 113, 909-915.
https://doi.org/10.7326/0003-4819-113-12-909

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413