全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Detection  2022 

Direct Conversion X-Ray Detectors with High Sensitivity at Low Dose Rate Based on All-Inorganic Lead-Free Perovskite Wafers

DOI: 10.4236/detection.2022.92002, PP. 13-27

Keywords: X-Ray Detection, Sensitivity, Cs3Bi2I9

Full-Text   Cite this paper   Add to My Lib

Abstract:

Just as lead-based perovskites that are hot in solar cell preparation, Bi-based perovskites have demonstrated excellent performance in direct X-ray detection, especially the Cs3Bi2I9 single crystals (SCs). However, compared with lead-halide perovskites, one challenge for the Cs3Bi2I9 SCs for X-ray detection application is that it is difficult to prepare large-sized and high-quality SCs. Therefore, how to get a large area with a high-quality wafer is also as important as Cs3Bi2I9 growth method research. Here, different anti-solvents are used for the preparation of poly-crystalline powder with the Antisolvents precipitation (A) method, as a control, High-energy ball milling (B) was also used to prepare poly-crystalline powders. The resultant two types of Cs3Bi2I9 wafer exhibit a micro-strain of 1.21 × 10-3, a resistivity of 5.13 × 108 Ω cm and a microstrain of 1.21 × 10-3, a resistivity of 2.21 × 109 Ω cm. As a result, an X-ray detector based on the high-quality Cs3Bi2I9 wafer exhibits excellent dose rate linearity, a sensitivity of 588 μC·Gyairs-1·cm-2 and a limit of detection (LoD) of 76 nGyair·s-1.

References

[1]  Zhou, H., Chen, Q., Li, G., et al. (2014) Photovoltaics. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 345, 542-546.
https://doi.org/10.1126/science.1254050
[2]  Green, M.A., Ho-Baillie, A. and Snaith, H.J. (2014) The Emergence of Perovskite Solar Cells. Nature Photonics, 8, 506-514.
https://doi.org/10.1038/nphoton.2014.134
[3]  Yang, W.S., et al. (2017) Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 356, 1376-1379.
[4]  Xu, W., Hu, Q., Bai, S., et al. (2019) Rational Molecular Passivation for High-Performance Perovskite Light-Emitting Diodes. Nature Photonics, 13, 418-424.
https://doi.org/10.1038/s41566-019-0390-x
[5]  Sakdinawat, A. and Attwood, D. (2009) Nanoscale X-Ray Imaging. Nature Photonics, 4, 840-848.
https://doi.org/10.1038/nphoton.2010.267
[6]  Chen, Q., Wu, J., Ou, X., et al. (2018) All-Inorganic Perovskite Nanocrystal Scintillators. Nature, 561, 88-93.
https://doi.org/10.1038/s41586-018-0451-1
[7]  Heiss, W. and Brabec, C. (2016) X-Ray Imaging: Perovskites Target X-Ray Detection. Nature Photonics, 10, 288-289.
https://doi.org/10.1038/nphoton.2016.54
[8]  Yakunin, S., et al. (2015) Detection of X-Ray Photons by Solution-Processed Lead Halide Perovskites. Nature Photonics, 9, 444–449.
https://doi.org/10.1038/nphoton.2015.82
[9]  Kim, Y.C., Kim, K.H., Son, D.Y., et al. (2017) Printable Organometallic Perovskite Enables Large-Area, Low-Dose X-Ray Imaging. Nature, 550, 87-91.
https://doi.org/10.1038/nature24032
[10]  Basiricò, L., Ciavatti, A. and Fraboni, B. (2020) Solution-Grown Organic and Perovskite X-Ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation. Advanced Materials Technologies, 6, Article ID: 2000475.
https://doi.org/10.1002/admt.202000475
[11]  Armaroli, G., Ferlauto, L., Lédée, F., et al. (2021) X-Ray-Induced Modification of the Photophysical Properties of MAPbBr3 Single Crystals. ACS Applied Materials & Interfaces, 13, 58301-58308.
https://doi.org/10.1021/acsami.1c16072
[12]  He, Y., Hadar, I. and Kanatzidis, M.G. (2021) Detecting Ionizing Radiation Using Halide Perovskite Semiconductors Processed through Solution and Alternative Methods. Nature Photonics, 16, 14-26.
[13]  Zhang, Y., Liu, Y., Xu, Z., et al. (2020) Nucleation-Controlled Growth of Superior Lead-Free Perovskite Cs3Bi2I9 Single-Crystals for High-Performance X-Ray Detection. Nature Communications, 11, Article No. 2304.
https://doi.org/10.1038/s41467-020-16034-w
[14]  Sun, Q., Xu, Y., Zhang, H., et al. (2018) Optical and Electronic Anisotropies in Perovskite Crystals of Cs3Bi2I9 Studies of Nuclear Radiation Detection. Journal of Materials Chemistry A, 6, 23388-23395.
https://doi.org/10.1039/C8TA09525F
[15]  Liu, Y.C., Zhang, Y.X., Zhou, Y., et al. (2020) Large Lead-Free Perovskite Single Crystal for High-Performance Coplanar X-Ray Imaging Applications. Advanced Optical Materials, 8, Article ID: 2000814.
https://doi.org/10.1002/adom.202000814
[16]  Wang, Z., Sun, R., Liu, N., et al. (2021) X-Ray Imager of 26-m Resolution Achieved by Perovskite Assembly. Nano Research, 15, 2399-2404.
https://doi.org/10.1007/s12274-021-3808-y
[17]  Zhang, H., Yang, Z., Zhou, M., et al. (2021) Reproducible X-Ray Imaging with a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure. Advanced Materials, 33, Article ID: 2102529.
https://doi.org/10.1002/adma.202102529
[18]  Zheng, J., Zeng, Y., Wang, J., et al. (2021) Hydrogen-Rich 2D Halide Perovskite Scintillators for Fast Neutron Radiography. Journal of the American Chemical Society, 143, 21302-21311.
https://doi.org/10.1021/jacs.1c08923
[19]  Zhang, H., Xu, Y., Sun, Q., et al. (2018) Lead Free Halide Perovskite Cs3Bi2I9 Bulk Crystals Grown by a Low Temperature Solution Method. CrystEngComm, 20, 4935-4941.
https://doi.org/10.1039/C8CE00925B
[20]  Wei, S., Tie, S., Shen, K., et al. (2021) High-Performance X-Ray Detector Based on Liquid Diffused Separation Induced Cs3Bi2I9 Single Crystal. Advanced Optical Materials, 9, Article ID: 2101351.
https://doi.org/10.1002/adom.202101351
[21]  Kawai, T. and Shimanuki, S. (1993) Optical Studies of (CH3NH3)3Bi2I9 Single Crystals. Physica Status Solidi (b), 177, K43-K45.
https://doi.org/10.1002/pssb.2221770128
[22]  Pagoria, P.F., Lee, G.S., Mitchell, A.R., et al. (2002) A Review of Energetic Materials Synthesis. Thermochimica Acta, 384, 187-204.
https://doi.org/10.1016/S0040-6031(01)00805-X
[23]  Dobson, P.J. (1982) Physics of Semiconductor Devices (2nd edn). Physics Bulletin, 33, 139.
https://doi.org/10.1088/0031-9112/33/4/035
[24]  Berger, M.J., Hubbell, J.H., Seltzer, S.M., et al. (2013) XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8. NIST.
https://www.nist.gov/pml/xcom-photon-cross-sections-database
[25]  Zhu, X.H., Zhao, B.J., Zhu, S.F., et al. (2007) Growth of PbI2 Crystal with Excessive Pb and Its Characterization. Journal of Semiconductors, 28, 898.
[26]  Sun, H., Zhu, X.H., Yang, D.Y., Yang, J., Gao, X.Y. and Li, X. (2014) Morphological and Structural Evolution during Thermally Physical Vapor Phase Growth of PbI2 Polycrystalline Thin Films. Journal of Crystal Growth, 29, 34.
https://doi.org/10.1016/j.jcrysgro.2014.07.043
[27]  Liu, Y., Zhang, Y.X., Zhu, X., et al. (2021) Triple-Cation and Mixed-Halide Perovskite Single Crystal for High-Performance X-Ray Imaging. Advanced Materials, 33, Article ID: 2006010.
https://doi.org/10.1002/adma.202006010
[28]  Polischuk, B.T., Rougeot, H., Wong, K., et al. (1999) Direct Conversion Detector for Digital Mammography. Proceedings of SPIE—The International Society for Optical Engineering, 3659, 417-425.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133