全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结构对石墨烯纳米带振动频率的影响
Effect of Structure on Vibration Frequency of the Graphene Nanoribbon

DOI: 10.12677/CMP.2022.112002, PP. 13-20

Keywords: 石墨烯,振动频率,分子动力学
Graphene
, Vibration Frequency, Molecular Dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯是石墨的片层结构,是现阶段材料和凝聚态学科主要的研究对象之一,具有优良的性能和独特的结构,同时拥有较为广阔的发展前景。因此针对石墨烯物理特性的研究已成为当下极为重要的一部分。本研究主要采用分子动力学方法模拟了石墨烯纳米带受压形变后弯曲振动的动力学过程。探讨了石墨烯纳米带结构尺寸、温度、旋转角度和层旋转模式对其振动频率的影响。仿真结果表明,石墨烯纳米带的谐振频率随着其结构尺寸、温度、旋转角度和层旋转模式的变化,其谐振频率总是出现一定程度的波动,其中长度是影响石墨烯纳米带振动频率的最重要因素,而层数、温度、旋转角度和层旋转模式对振动频率有一定的影响,振动频率受石墨烯纳米带宽度的影响较小。
Graphene is a lamellar structure of graphite and it is one of important research objects in the current materials and condensed matter disciplines. It has a wide range of development prospect due to its unique structure and excellent properties. Therefore, the research on the physical properties of graphene has become a particularly important part of the present. In this study, the molecular dynamics method was mainly used to simulate the dynamic process of bending vibration of graphene nanoribbons after compressive deformation. The effects of structure size, temperature, rotation angle and layer rotation mode on the vibration frequency of the graphene nanoribbon were studied. The simulation results demonstrate that the resonant frequency of graphene nanoribbons always fluctuates to a certain extent with the changes in its structure size, temperature, rotation angle and layer rotation mode, and the length is the most important factor affecting the vibration frequency of graphene nanoribbons. And the number of the layer, temperature, rotation angle and layer rotation mode have a certain influence on the vibration frequency, which is influenced slightly by the width of the nanoribbon.

References

[1]  Tombros, N., Jozsa, C., Popinciuc, M., et al. (2007) Electronic Spin Transport and Spin Precession in Single Graphene Layers at Room Temperature. Nature, 448, 571-574.
https://doi.org/10.1038/nature06037
[2]  Castro Neto, A.H., Guinea, F., Peres, N.M.R., et al. (2009) The Electronic Properties of Grapheme. Reviews of Modern Physics, 81, 109-162.
https://doi.org/10.1103/RevModPhys.81.109
[3]  Hirsch, A. (2010) The Era of Carbon Allotropes. Nature Materials, 9, 868-871.
https://doi.org/10.1038/nmat2885
[4]  Cao, Q., Geng, X., Wang, H., et al. (2018) A Review of Current Development of Graphene Mechanics. Crystals, 8, Article No. 357.
https://doi.org/10.3390/cryst8090357
[5]  Xu, T., Zhang, Z. and Qu, L. (2020) Graphene-Based Fibers: Recent Advances in Preparation and Application. Advanced Materials, 32, Article ID: 1901979.
https://doi.org/10.1002/adma.201901979
[6]  Naumis, G.G., Terrones, M., Terrones, H., et al. (2009) Design of Graphene Electronic Devices Using Nanoribbons of Different Widths. Applied Physics Letters, 95, Article ID: 182104.
https://doi.org/10.1063/1.3257731
[7]  Sang, M., Shin, J., Kim, K., et al. (2019) Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials, 9, Article No. 374.
https://doi.org/10.3390/nano9030374
[8]  Xie, S.H., Liu, Y.Y. and Li, J.Y. (2008) Comparison of the Effective Conductivity between Composites Reinforced by Graphene Nanosheets and Carbon Nanotubes. Applied Physics Letters, 92, Article ID: 243121.
https://doi.org/10.1063/1.2949074
[9]  任成, 王小军, 李永祥, 等. 石墨烯复合材料的研究及其应用[J]. 现代化工, 2015, 35(1): 32-35.
[10]  Zhang, L., Duan, Z., Zhu, H., et al. (2017) Advances in Synthesizing Copper/Graphene Composite Material. Materials and Manufacturing Processes, 32, 475-479.
https://doi.org/10.1080/10426914.2016.1198036
[11]  Liu, H., Niu, Y., Yin, Y., et al. (2016) Modeling of the Photodetector Based on the Multilayer Graphene Nanoribbons. AIP Advances, 6, Article ID: 075205.
https://doi.org/10.1063/1.4958879
[12]  Choi, S.H. (2017) Unique Properties of Graphene Quantum Dots and Their Applications in Photonic/Electronic Devices. Journal of Physics D: Applied Physics, 50, Article ID: 103002.
https://doi.org/10.1088/1361-6463/aa5244
[13]  李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014, 29(5): 329-356.
[14]  Li, G., Wang, Y., Wang, W., et al. (2018) Development of a Targeted Stimulus and Synchronized Detection System for Investigation of Graphene Photodetectors at the Nano-Scale. Journal of the Optical Society of America B—Optical Physics, 35, 2612-2615.
https://doi.org/10.1364/JOSAB.35.002612
[15]  Geng, H., Yuan, D., Yang, Z., et al. (2019) Graphene van der Waals Heterostructures for High-Performance Photodetectors. Journal of Materials Chemistry C, 7, 11056-11067.
https://doi.org/10.1039/C9TC03213D
[16]  Wang, Y., Li, Z., Wang, J., et al. (2011) Graphene and Graphene Ox-ide: Biofunctionalization and Applications in Biotechnology. Trends in Biotechnology, 29, 205-212.
https://doi.org/10.1016/j.tibtech.2011.01.008
[17]  Mudusu, D., Nandanapalli, K.R., Lee, S., et al. (2020) Recent Advances in Graphene Monolayers Growth and Their Biological Applications: A Review. Advances in Colloid and In-terface Science, 283, Article ID: 102225.
https://doi.org/10.1016/j.cis.2020.102225
[18]  Song, Z., Wang, Y. and Xu, Z. (2015) Mechanical Responses of the Bio-Nano Interface: A Molecular Dynamics Study of Graphene-Coated Lipid Membrane. Theoretical and Applied Mechanics Letters, 5, 231-235.
https://doi.org/10.1016/j.taml.2015.11.003
[19]  Min, K. and Aluru, N.R. (2011) Mechanical Properties of Gra-phene under Shear Deformation. Applied Physics Letters, 98, Article ID: 013113.
https://doi.org/10.1063/1.3534787
[20]  Sajadi, B., Alijani, F., Davidovikj, D., et al. (2017) Experimental Charac-terization of Graphene by Electrostatic Resonance Frequency Tuning. Journal of Applied Physics, 122, Article ID: 234302.
https://doi.org/10.1063/1.4999682
[21]  Bunch, J.S., van der Zande, A.M., Verbridge, S.S., et al. (2007) Electromechanical Resonators from Graphene Sheets. Science, 315, 490-493.
https://doi.org/10.1126/science.1136836
[22]  Gu, F., Zhang, J.H., Yang, L.J., et al. (2011) Molecular Dynamics Simulation of Resonance Properties of Strain Graphene Nanoribbons. Acta Physica Sinica, 60, Article ID: 056103.
https://doi.org/10.7498/aps.60.056103
[23]  Kwon, O.K., Kim, K.-S., Park, J. and Kang, J.W. (2013) Molecular Dynamics Modeling and Simulations of Graphene-Nanoribbon-Resonator-Based Nanobalance as Yoctogram Resolution Detector. Computational Materials Science, 67, 329-333.
https://doi.org/10.1016/j.commatsci.2012.09.017
[24]  Sakhaee-Pour, A., Ahmadian, M.T. and Naghdabadi, R. (2008) Vibrational Analysis of Single-Layered Graphene Sheets. Nanotechnology, 19, Article ID: 085702.
https://doi.org/10.1088/0957-4484/19/8/085702
[25]  Jiang, S., Shi, S. and Wang, X. (2014) Nanomechanics and Vibration Analysis of Graphene Sheets via a 2D Plate Model. Journal of Physics D: Applied Physics, 47, Article ID: 045104.
https://doi.org/10.1088/0022-3727/47/4/045104

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413