全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Review: Advances in the CIGS Thin Films for Photovoltaic Applications

DOI: 10.4236/sgre.2022.134005, PP. 75-87

Keywords: CIGS, Thin Films, Photovoltaics, Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

The copper indium gallium selenium (CIGS) thin film is widely acknowledged as the most promising material for photovoltaic applications. Mainly due to appealing chemical and physical structures properties, low fabrication cost, high efficiency, and uncomplicated integration especially with the advancement in the use of the flexible substrate. Promising results have been achieved in CIGS-based solar cells in the last few years and these devices could be key in unlocking the potential of green energy. Therefore, it is necessary to understand the parameters that are critical to improving the efficiency of these devices. Parameters such as doping concentration, thickness, substrates, and energy bandgap. In this review, we comprehensively report on these parameters with an aim of showing the recent progress on the various methods used to optimize them, all geared towards efficient and low cost solar cells for PV applications.

References

[1]  Herbert, G.J., Iniyan, S., Sreevalsan, E. and Rajapandian, S. (2007) A Review of Wind Energy Technologies. Renewable and Sustainable Energy Reviews, 11, 1117-1145.
https://doi.org/10.1016/j.rser.2005.08.004
[2]  Tian, Y. and Zhao, C.-Y. (2013) A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications. Applied Energy, 104, 538-553.
https://doi.org/10.1016/j.apenergy.2012.11.051
[3]  Uihlein, A. and Magagna, D. (2016) Wave and Tidal Current Energy—A Review of the Current State of Research beyond Technology. Renewable and Sustainable Energy Reviews, 58, 1070-1081.
https://doi.org/10.1016/j.rser.2015.12.284
[4]  Kuriqi, A., Pinheiro, A.N., Sordo-Ward, A. and Garrote, L. (2019) Influence of Hydrologically Based Environmental Flow Methods on Flow Alteration and Energy Production in a Run-of-River Hydropower Plant. Journal of Cleaner Production, 232, 1028-1042.
https://doi.org/10.1016/j.jclepro.2019.05.358
[5]  Huang, C., Hou, H., Hu, E., Yu, G., Chen, S. and Yang, Y. (2020) Measures to Reduce Solar Energy Dumped in a Solar Aided Power Generation Plant. Applied Energy, 258, Article ID: 114106.
https://doi.org/10.1016/j.apenergy.2019.114106
[6]  Ren, G., Liu, J., Wan, J., Guo, Y. and Yu, D. (2017) Overview of Wind Power Intermittency: Impacts, Measurements, and Mitigation Solutions. Applied Energy, 204, 47-65.
https://doi.org/10.1016/j.apenergy.2017.06.098
[7]  A Task of Terawatts (2008). Nature, 454, 805.
https://doi.org/10.1038/454805a
[8]  Ritchie, H. and Roser, M. (2020) Energy.
https://ourworldindata.org/
[9]  Zhang, H., Lu, Y., Han, W., Zhu, J., Zhang, Y. and Huang, W. (2020) Solar Energy Conversion and Utilization: Towards the Emerging Photo-Electrochemical Devices Based on Perovskite Photovoltaics. Chemical Engineering Journal, 393, Article ID: 124766.
https://doi.org/10.1016/j.cej.2020.124766
[10]  Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N. and Ho-Baillie, A.W.Y. (2020) Solar Cell Efficiency Tables (Version 55). Progress in Photovoltaics: Research and Applications, 28, 3-15.
https://doi.org/10.1002/pip.3228
[11]  Yamaguchi, M., Yamada, H., Katsumata, Y., Lee, K.-H., Araki, K. and Kojima, N. (2017) Efficiency Potential and Recent Activities of High-Efficiency Solar Cells. Journal of Materials Research, 32, 3445-3457.
https://doi.org/10.1557/jmr.2017.335
[12]  Chen, W., Roca I Cabarrocas, P. (2019) Rational Design of Nanowire Solar Cells: From Single Nanowire to Nanowire Arrays. Nanotechnology, 30, Article ID: 194002.
https://doi.org/10.1088/1361-6528/aaff8d
[13]  Ghavami, F. and Salehi, A. (2020) High-Efficiency CIGS Solar Cell by Optimization of Doping Concentration, Thickness and Energy Band Gap. Modern Physics Letters B, 34, Article ID: 2050053.
https://doi.org/10.1142/S0217984920500530
[14]  Ramanujam, J. and Singh, U.P. (2017) Copper Indium Gallium Selenide Based Solar Cells—A Review. Energy & Environmental Science, 10, 1306-1319.
https://doi.org/10.1039/C7EE00826K
[15]  Singh, U.P. and Patra, S.P. (2010) Progress in Polycrystalline Thin-Film Cu (In, Ga) Solar Cells. International Journal of Photoenergy, 2010, Article ID: 468147.
https://doi.org/10.1155/2010/468147
[16]  Pianezzi, F., Chirila, A., Blosch, P., Seyrling, S., Buecheler, S., Kranz, L., Fella, C. and Tiwari, A. (2012) Electronic Properties of Cu(In,Ga)Se2 Solar Cells on Stainless Steel Foils without Diffusion Barrier. Progress in Photovoltaics: Research and Applications, 20, 253-259.
https://doi.org/10.1002/pip.1247
[17]  Powalla, M., Paetel, S., Hariskos, D., Wuerz, R., Kessler, F., Lechner, P., Wischmann, W. and Friedlmeier, T.M. (2017) Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2. Engineering, 3, 445-451.
https://doi.org/10.1016/J.ENG.2017.04.015
[18]  Eisenbarth, T., Caballero, R., Kaufmann, C.A., Eicke, A., Unold, T. (2012) Influence of Iron on Defect Concentrations and Device Performance for Cu(In,Ga)Se2 Solar Cells on Stainless Steel Substrates. Progress in Photovoltaics: Research and Applications, 20, 568-574.
https://doi.org/10.1002/pip.2260
[19]  Wilson, G.M., Al-Jassim, M., Metzger, W.K., Glunz, S.W., Verlinden, P., Xiong, G., Mansfield, L.M., Stanbery, B.J., Zhu, K. and Yan, Y. (2020) The 2020 Photovoltaic Technologies Roadmap. Journal of Physics D: Applied Physics, 53, Article ID: 493001.
https://doi.org/10.1088/1361-6463/ab9c6a
[20]  Ouedraogo, S., Sam, R., Ouedraogo, F., Kebre, M.B., Zougmore, F. and Ndjaka, J.-M. (2013) Optimization of Copper Indium Gallium Di-Selenide (CIGS) Based Solar Cells by Back Grading. 2013 Africon, Pointe aux Piment, 9-12 September 2013, 1-6.
https://doi.org/10.1109/AFRCON.2013.6757813
[21]  Yang, S.C., Ochoa, M., Hertwig, R., Aribia, A., Tiwari, A.N. and Carron, R. (2021) Influence of Ga Back Grading on Voltage Loss in Low-temperature Co-Evaporated Cu(In,Ga)Se2 Thin Film Solar Cells. Progress in Photovoltaics: Research and Applications, 29, 630-637.
https://doi.org/10.1002/pip.3413
[22]  Banerjee, S., Ojha, Y.K., Vikas, K. and Kumar, A. (2016) High Efficient CIGS Based Thin Film Solar Cell Performance Optimization Using PC1D. International Research Journal of Engineering and Technology, 3, 385-388.
[23]  Gezgin, S.Y., Houimi, A., Gündogdu, Y., Mercimek, B. and Kilic, H.S. (2021) Determination of Photovoltaic Parameters of CIGS Hetero Junction Solar Cells Produced by PLD Technique, Using SCAPS Simulation Program. Vacuum, 192, Article ID: 110451.
https://doi.org/10.1016/j.vacuum.2021.110451
[24]  Mustafa, F.I., Kadhim, M.A. and Hintaw, N.J. (2018) Effect Thickness and Annealing Temperature on the CIGS Thin Film Solar Cell Performance. 2018 9th International Renewable Energy Congress (IREC), Hammamet, 20-22 March 2018, 1-5.
https://doi.org/10.1109/IREC.2018.8362462
[25]  Wuerz, R., Eicke, A., Frankenfeld, M., Kessler, F., Powalla, M., Rogin, P. and Yazdani-Assl, O. (2009) CIGS Thin-Film Solar Cells on Steel Substrates. Thin Solid Films, 517, 2415-2418.
https://doi.org/10.1016/j.tsf.2008.11.016
[26]  Burgelman, M., Decock, K., Khelifi, S. and Abass, A. (2013) Advanced Electrical Simulation of Thin Film Solar Cells. Thin Solid Films, 535, 296-301.
https://doi.org/10.1016/j.tsf.2012.10.032
[27]  Wang, Y.-C., Wu, T.-T. and Chueh, Y.-L. (2019) A Critical Review on Flexible Cu (In, Ga) Se2 (CIGS) Solar Cells. Materials Chemistry and Physics, 234, 329-344.
https://doi.org/10.1016/j.matchemphys.2019.04.066
[28]  Liu, W.-S., Hu, H.-C., Pu, N.-W. and Liang, S.-C. (2015) Developing Flexible CIGS Solar Cells on Stainless Steel Substrates by Using Ti/TiN Composite Structures As the Diffusion Barrier Layer. Journal of Alloys and Compounds, 631, 146-152.
https://doi.org/10.1016/j.jallcom.2014.12.189
[29]  Salomé, P.M., Fjallstrom, V., Szaniawski, P., Leitao, J.P., Hultqvist, A., Fernandes, P.A., Teixeira, J.P. and Falcao, B.P., Zimmermann, U. and Da Cunha, A.F. (2015) A Comparison between Thin Film Solar Cells Made from Co-Evaporated CuIn1-xGaxSe2 Using a One-Stage Process Versus a Three-Stage Process. Progress in Photovoltaics: Research and Applications, 23, 470-478.
https://doi.org/10.1002/pip.2453
[30]  Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2013) Solar Cell Efficiency Tables (Version 42). Progress in Photovoltaics: Research and Applications, 21, 827-837.
https://doi.org/10.1002/pip.2404
[31]  Stuckelberger, M.E., Nietzold, T., West, B.M., Farshchi, R., Poplavskyy, D., Bailey, J., Lai, B., Maser, J.M. and Bertoni, M.I. (2017) How Does CIGS Performance Depend on Temperature at the Microscale? IEEE Journal of Photovoltaics, 8, 278-287.
https://doi.org/10.1109/JPHOTOV.2017.2762584
[32]  Zhang, L., He, Q., Jiang, W.-L., Liu, F.-F., Li, C.-J. and Sun, Y. (2009) Effects of Substrate Temperature on the Structural and Electrical Properties of Cu(In,Ga)Se2 Thin Films. Solar Energy Materials and Solar Cells, 93, 114-118.
https://doi.org/10.1016/j.solmat.2008.09.002
[33]  Haque, F., Rahman, K.S., Islam, M.A., Yusoff, Y., Khan, N.A., Nasser, A.A. and Amin, N. (2019) Effects of Growth Temperatures on the Structural and Optoelectronic Properties of Sputtered Zinc Sulfide Thin Films for Solar Cell Applications. Optical and Quantum Electronics, 51, Article No. 278.
https://doi.org/10.1007/s11082-019-1994-6
[34]  Ferouani, A., Boudia, M.M., Cheknane, A. and Benyoucef, B. (2011) Temperature Effect of Electrical Properties of Cigs Solar Cell. Journal of Fundamental and Applied Sciences, 3, 77-84.
https://doi.org/10.4314/jfas.v3i1.8
[35]  Liang, H., Avachat, U., Liu, W., Van Duren, J. and Le, M. (2012) CIGS Formation by High Temperature Selenization of Metal Precursors in H2Se Atmosphere. Solid-State Electronics, 76, 95-100.
https://doi.org/10.1016/j.sse.2012.05.055
[36]  Liao, K.-H., Su, C.-Y., Ding, Y.-T. and Koo, H.-S. (2013) Microstructural Characterization of CIGS Formation Using Different Selenization Processes. Applied Surface science, 270, 139-144.
https://doi.org/10.1016/j.apsusc.2012.12.142
[37]  Li, Z.-H., Cho, E.-S. and Kwon, S.J. (2013) Selenization Annealing Effect of DC-sputtered Metallic Precursors Using the Rapid Thermal Process for Cu(In,Ga)Se2 Thin Film Solar Cells. Thin Solid Films, 547, 156-162.
https://doi.org/10.1016/j.tsf.2013.03.101
[38]  Ahn, S., Kim, K.H., Yun, J.H. and Yoon, K.H. (2009) Effects of Selenization Conditions on Densification of Cu(In,Ga)Se2 (CIGS) Thin Films Prepared by Spray Deposition of CIGS Nanoparticles. Journal of Applied Physics, 105, Article ID: 113533.
https://doi.org/10.1063/1.3141755
[39]  Edoff, M., Lindahl, J., Watjen, T. and Nyber, T. (2015) Gas Flow Sputtering of Cu (In, Ga) Se2 for Thin Film Solar Cells. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, 14-19 June 2015, 1-5.
https://doi.org/10.1109/PVSC.2015.7356155
[40]  Zhang, L., Zhuang, D., Zhao, M., Gong, Q., Guo, L., Ouyang, L., Sun, R., Wei, Y. and Zhan, S. (2017) The Effects of Annealing Temperature on CIGS Solar Cells by Sputtering from Quaternary Target with Se-Free Post Annealing. Applied Surface Science, 413, 175-180.
https://doi.org/10.1016/j.apsusc.2017.03.289
[41]  Liu, J., Zhuang, D., Luan, H., Cao, M., Xie, M. and Li, X. (2013) Preparation of Cu-(In,Ga)Se2 Thin Film by Sputtering from Cu(In,Ga)Se2 Quaternary Target. Progress in Natural Science: Materials International, 23, 133-138.
https://doi.org/10.1016/j.pnsc.2013.02.006
[42]  Adel, C., Fethi, B.M. and Brahim, B. (2016) Effect of Annealing Under Various Atmospheres on the Properties of Electrodeposited CIGS Thin Films on ITO Coated Glass Substrates. Journal of Materials Science: Materials in Electronics, 27, 3481-3487.
https://doi.org/10.1007/s10854-015-4181-y
[43]  Mankoshi, M.A.K., Mustafa, F.I. and Hintaw, N.J. (2018) Effects of Annealing Temperature on Structural and Optical Properties of CIGS Thin Films for Using in Solar Cell Applications. Journal of Physics: Conference Series, 1032, Article ID: 012019.
https://doi.org/10.1088/1742-6596/1032/1/012019
[44]  Hibberd, C.J., Ernits, K., Kaelin, M., Müller, U. and Tiwari, A. (2008) Chemical Incorporation of Copper into Indium Selenide Thin-Films for Processing of CuInSe2 Solar Cells. Progress in Photovoltaics: Research and Applications, 16, 585-593.
https://doi.org/10.1002/pip.843
[45]  Nishiwaki, S., Feurer, T., Bissig, B., Avancini, E., Carron, R., Buecheler, S. and Tiwari, A.N. (2017) Precise Se-flux Control and Its Effect on Cu(In,Ga)Se2 Absorber Layer Deposited at Low Substrate Temperature by Multi Stage Co-Evaporation. Thin Solid Films, 633, 18-22.
https://doi.org/10.1016/j.tsf.2016.10.057
[46]  Asaduzzaman, M., Hasan, M. and Bahar, A.N. (2016) An Investigation into the Effects of Band Gap and Doping Concentration on Cu(In,Ga)Se2 Solar Cell Efficiency. SpringerPlus, 5, Article No. 578.
https://doi.org/10.1186/s40064-016-2256-8
[47]  Shamim, S., Sarker, A., Ahmed, M.R. and Huq, M.F. (2015) Performance Analysis on the Effect of Doping Concentration in Copper Indium Gallium Selenide (CIGS) Thin-Film Solar Cell. International Journal of Computer Applications, 113, 8-11.
https://doi.org/10.5120/19893-1904
[48]  Ulicná, S., Welch, L.M., Abbas, A., Togay, M., Tsai, V., Betts, T.R., Malkov, A.V., Walls, J.M. and Bowers, J.W. (2021) Sodium Doping of Solution-Processed Amine-Thiol Based CIGS Solar Cells by Thermal Evaporation of NaCl. Progress in Photovoltaics: Research and Applications, 29, 546-557.
https://doi.org/10.1002/pip.3408
[49]  Cheng, S., Zhang, K., Zhang, Y., He, Z., Liang, B., Du, Q., Sun, Y. and Liu, W. (2021) Effects of Different Cs Distribution in the Film on the Performance of CIGS Thin Film Solar Cells. Solar Energy Materials and Solar Cells, 222, Article ID: 110917.
https://doi.org/10.1016/j.solmat.2020.110917

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413