全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Planck Units Measured Totally Independently of Big G

DOI: 10.4236/ojm.2022.122004, PP. 55-85

Keywords: Planck Mass, Newton’s Gravitational Constant, Cavendish Apparatus, Quantum Gravity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we show how one can find the Planck units without any knowledge of Newton’s gravitational constant, by mainly focusing on the use of a Cavendish apparatus to accomplish this. This is in strong contrast to the assumption that one needs to know G?in order to find the Planck units. The work strongly supports the idea that gravity is directly linked to the Planck scale, as suggested by several quantum gravity theories. We further demonstrate that there is no need for the Planck constant in observable gravity phenomena despite quantization, and we also suggest that standard physics uses two different mass definitions without acknowledging them directly. The quantization in gravity is linked to the Planck length and Planck time, which again is linked to what we can call the number of Planck mass events. That is, quantization in gravity is not only a hypothesis, but something we can currently and actually detect and measure.

References

[1]  Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften.
[2]  Planck, M. (1906) Vorlesungen über die Theorie der Wärmestrahlung. J.A. Barth, Leipzig, 163. See Also the English Translation “The Theory of Radiation” (1959) Dover.
[3]  Haug, E.G. (2016) The Gravitational Constant and the Planck Units. A Simplification of the Quantum Realm. Physics Essays, 29, 558-561.
https://doi.org/10.4006/0836-1398-29.4.558
[4]  Haug, E.G. (2020) Finding the Planck Length Multiplied by the Speed of Light without Any Knowledge of G, c, or h, Using a Newton Force Spring. Journal Physics Communication, 4, Article ID: 075001.
https://doi.org/10.1088/2399-6528/ab9dd7
[5]  Cahill, K. (1984) The Gravitational Constant. Lettere al Nuovo Cimento, 39, 181-184.
https://doi.org/10.1007/BF02790586
[6]  Cahill, K. (1984) Tetrads, Broken Symmetries, and the Gravitational Constant. Zeitschrift Für Physik C Particles and Fields, 23, 353-356.
https://doi.org/10.1007/BF01572659
[7]  Cohen, E.R. (1987) Fundamental Physical Constants. In: Sabbata and Melniko, V.N., Eds., Gravitational Measurements, Fundamental Metrology and Constants, Kluwer Academic Publishers, Dordrecht, 59-90.
[8]  McCulloch, M.E. (2014) Gravity from the Uncertainty Principle. Astrophysics and Space Science, 349, 957-959.
https://doi.org/10.1007/s10509-013-1686-9
[9]  McCulloch, M.E. (2016) Quantised Inertia from Relativity and the Uncertainty Principle. Europhysics Letters (EPL), 115, Article No. 69001.
https://doi.org/10.1209/0295-5075/115/69001
[10]  Kalinski, M. (2021) QED-Like Simple High Order Perturbative Relation between the Gravitational Constant G and the Planck Constant h. Journal of High Energy Physics, Gravitation and Cosmology, 7, 595-601.
https://doi.org/10.4236/jhepgc.2021.72034
[11]  Sánchez, J. (2017) Calculation of the Gravitational Constant G Using Electromagnetic Parameters. Journal of High Energy Physics, Gravitation and Cosmology, 3, 87-95.
https://doi.org/10.4236/jhepgc.2017.31012
[12]  Bleksley, A.E.H. (1951) A New Approach to Cosmology: III. South African Journal of Science, 48, 20-24.
[13]  Haug, E.G. (2021) Quantum Cosmology: Cosmology Linked to the Planck Scale. Hal Archives.
https://hal.archives-ouvertes.fr/hal-03424108
[14]  Haug, E.G. (2022) Progress on Composite View of Newtonian Gravitational Constant and Its Link to the Planck Scale. Hal Archives.
https://hal.archives-ouvertes.fr/hal-03591779/document
[15]  Haug, E.G. (2022) Cosmological Scale versus Planck Scale: As Above, So Below! Hal Archives.
[16]  Newton, I. (1686) Philosophiae Naturalis Principia Mathematica. London, Jussu Societatis Regiae ac Typis Josephi Streater.
[17]  Cohen, I.B. (1998) Newton’s Determination of the Masses and Densities of the Sun, Jupiter, Saturn, and the Earth. Archive for History of Exact Sciences, 53, 83-95.
https://doi.org/10.1007/s004070050022
[18]  Cavendish, H. (1798) Experiments to Determine the Density of the Earth. Philosophical Transactions of the Royal Society of London, (Part II), 88, 469-526.
https://doi.org/10.1098/rstl.1798.0022
[19]  Cornu, A. and Baille, J.B. (1873) Détermination nouvelle de la constante de l’attraction et de la densité moyenne de la terre. Comptes Rendus de l’Académie des Sciences Paris, 76, 954-958.
[20]  Boys, C.V. (1894) The Newtonian Constant of Gravitation. Nature, 50, 571.
https://doi.org/10.1038/050571a0
[21]  Planck, M. (1928) Einführung in die allgemeine Mechanik. Verlag von Hirtzel, Leipzig.
[22]  Einstein, A. (1916) Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin.
[23]  Haug, E.G. (2022) Newton Did Not Invent or Use the So-Called Newton’s Gravitational Constant; G, It Has Mainly Caused Confusion. Journal of Modern Physics, 13, 179-205.
https://doi.org/10.4236/jmp.2022.132014
[24]  Kibble, B.P. (1975) A Measurement of the Gyromagnetic Ratio of the Proton by the Strong Field Method. In: Sanders, J.H. and Wapstra, A.H., Eds., Atomic Masses and Fundamental Constants 5, Springer, Berlin, 545-551.
https://doi.org/10.1007/978-1-4684-2682-3_80
[25]  Stock, M. (1989) The Watt Balance: Determination of the Planck Constant and Redefinition of the Kilogram. Annalen der Physik, 501, 315B.
[26]  Thomas, M.M., Espel, P.P., Ziane, D.D., Pinot, P.P., Juncar, P.P., Santos, F., Merlet, S., Piquemal, F, and Genevés, G. (2015) First Determination of the Planck Constant Using the LNE Watt Balance. Metrologia, 52, 433-443.
https://doi.org/10.1088/0026-1394/52/2/433
[27]  Robinson, I.A. and Schlamminger, S. (2016) The Watt or Kibble Balance: A Technique for Implementing the New SI Definition of the Unit of Mass. Metrologia, 53, A46-A74.
https://doi.org/10.1088/0026-1394/53/5/A46
[28]  Planck, M. (1901) Ueber das gesetz der energieverteilung im normalspectrum. Annalen der Physik, 309, 553-563.
https://doi.org/10.1002/andp.19013090310
[29]  Haug, E.G. (2020) Collision Space-Time: Unified Quantum Gravity. Physics Essays, 33, 46-78.
https://doi.org/10.4006/0836-1398-33.1.46
[30]  Haug, E.G. (2021) Using a Grandfather Pendulum Clock to Measure the World’s Shortest Time Interval, the Planck Time (with Zero Knowledge of G). Journal of Applied Mathematics and Physics, 9, 1076-1088.
https://www.scirp.org/journal/paperinformation.aspx?paperid=109417
https://doi.org/10.4236/jamp.2021.95074
[31]  Haug, E.G. (2021) Measurements of the Planck Length from a Ball-Clock without Knowledge of Newton’s Gravitational Constant G or the Planck Constant. European Journal of Applied Physics, 3, 15-20.
https://www.ej-physics.org/index.php/ejphysics/article/view/133
https://doi.org/10.24018/ejphysics.2021.3.6.133
[32]  Haug, E.G. (2017) Can the Planck Length Be Found Independent of Big G? Applied Physics Research, 9, 58.
https://doi.org/10.5539/apr.v9n6p58
[33]  Haug, E.G. (2021) The Planck Constant and Its Relation to the Compton Frequency.
https://vixra.org/abs/2111.0096
[34]  Gillies, G.T. (1997) The Newtonian Gravitational Constant: Recent Measurements and Related Studies. Reports on Progress in Physics, 60, 151-225.
https://doi.org/10.1088/0034-4885/60/2/001
[35]  Bisnovatyi-Kogan, G.S. (2006) Checking the Variability of the Gravitational Constant with Binary Pulsars. International Journal of Modern Physics D, 150, 1047-1051.
https://doi.org/10.1142/S0218271806008747
[36]  Fixler, B., Foster, G.T., McGuirk, J.M. and Kasevich, M.A. (2007) Atom Interferometer Measurement of the Newtonian Constant of Gravity. Science, 315, 74-77.
https://doi.org/10.1126/science.1135459
[37]  Galli, S., Melchiorri, A., Smoot, G.F. and Zahn, O. (2009) From Cavendish to Planck: Constraining Newton’s Gravitational Constant with CMB Temperature and Polarization Anisotropy. Physical Review D, 80, Article ID: 023508.
https://doi.org/10.1103/PhysRevD.80.023508
[38]  Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. and Tino, G.M. (2014) Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms. Nature, 510, 518-521.
https://doi.org/10.1038/nature13433
[39]  Compton, A.H. (1923) A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 210, 483-502.
https://doi.org/10.1103/PhysRev.21.483
[40]  Haug, E.G. (2020) Derivation of a Relativistic Compton Wave. Research Square.
https://doi.org/10.21203/rs.3.rs-41028/v1
[41]  Rydberg, J.R. (1890) On the Structure of the Line-Spectra of the Chemical Elements. Philosophical Magazine, 29, 331-337.
https://doi.org/10.1080/14786449008619945
[42]  Wang, O., Toikkanen, Z.W., Yin, F., Li, Z.Y., Quinn, B.M. and Palmer, R.E. (2010) Counting the Atoms in Supported, Monolayer-Protected Gold Clusters. Journal of the American Chemical Society, 132, 2854-2855.
https://doi.org/10.1021/ja909598g
[43]  Becker, P. (2012) The New Kilogram Definition Based on Counting the Atoms in a 28Si Crystal. Contemporary Physics, 53, 461-479.
https://doi.org/10.1080/00107514.2012.746054
[44]  Bartl, G., et al. (2017) A New 28Si Single Crystal: Counting the Atoms for the New Kilogram Definition. Metrologia, 54, 693-715.
https://doi.org/10.1088/1681-7575/aa7820
[45]  Jammer, M. (2000) Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, Princeton.
https://doi.org/10.1515/9781400823789
[46]  Haug, E.G. (2022) Unified Quantum Gravity Field Equation Describing the Universe from the Smallest to the Cosmological Scales. Physics Essays, 35, 61-71.
https://doi.org/10.4006/0836-1398-35.1.61
[47]  Newton, I. (1704) Opticks: Or, a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. Samuel Smith and Benjamin Walford, London.
https://doi.org/10.5479/sil.302475.39088000644674
[48]  Eddington, A.S. (1918) (1918) Report On the Relativity Theory of Gravitation. In: Petkov, V., Ed., The Physical Society of London, Fleetway Press, London, 146 p.
[49]  Bridgman, P.W. (1931) Dimensional Analysis. Yale University Press, New Haven.
[50]  Gorelik, G. (1992) First Steps of Quantum Gravity and the Planck Values. Boston University, Boston.
[51]  Adler, R.J. (2010) Six Easy Roads to the Planck Scale. American Journal of Physics, 78, 925-932.
https://doi.org/10.1119/1.3439650
[52]  Hossenfelder, S. (2012) Can We Measure Structures to a Precision Better than the Planck Length? Classical and Quantum Gravity, 29, Article ID: 115011.
https://doi.org/10.1088/0264-9381/29/11/115011
[53]  Unzicker, A. (2020) The Mathematical Reality: Why Space and Time Are an Illusion. Independently Published, Chicago.
[54]  Pyle, A. (1995) Atomism and It’s Critics. Thoemmes Press, Bristol.
[55]  Schrödinger, E. (1954) Nature and the Greeks and Science and Humanism. Cambridge University Press, Cambridge.
[56]  Whyte, L.L. (1961) Essay on Atomism: From Democritus to 1960. Wesleyan Univ. Press, Middletown.
[57]  Schrödinger, E. (1930) über die kräftefreie bewegung in der relativistischen quantenmechanik. Sitzungsberichte der Preuβischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse.
[58]  Lan, S., Kuan, P., Estey, B., English, D., Brown, J.M., Hohensee, M.A. and Müller (2013) A Clock Directly Linking Time to a Particle’s Mass. Science, 339, 554-557.
https://doi.org/10.1126/science.1230767
[59]  Dolce, D. and Perali, A. (2015) On the Compton Clock and the Undulatory Nature of Particle Mass in Graphene Systems. The European Physical Journal Plus, 130, Article No. 41.
https://doi.org/10.1140/epjp/i2015-15041-5
[60]  Campbell, S.L., et al. (2017) A Fermi-Degenerate Three-Dimensional Optical Lattice Clock. Science, 358, 90-94.
https://doi.org/10.1126/science.aam5538
[61]  Zanon-Willette, T., et al. (2018) Composite Laser-Pulses Spectroscopy for High-Accuracy Optical Clocks: A Review of Recent Progress and Perspectives. Reports on Progress in Physics, 81, Article ID: 094401.
https://doi.org/10.1088/1361-6633/aac9e9
[62]  Duff, M.J., Okun, L.B. and Veneziano, G. (2002) Trialogue on the Number of Fundamental Constants. Journal of High Energy Physics, 3, JHEP03.
https://doi.org/10.1088/1126-6708/2002/03/023
[63]  De Broglie, L. (1924) Recherches sur la théorie des quanta. PhD Thesis, Masson, Paris.
https://doi.org/10.1051/anphys/192510030022
[64]  De Broglie, L. (1930) An Introduction to the Study of Wave Mechanics. Metheum & Co., Essex.
[65]  Fraundorf, P. (2011) A One-Map Two-Clock Approach to Teaching Relativity in Introductory Physics. Working Paper, Department of Physics Astronomy, University of Missouri, St. Louis.
[66]  Lvovsky, A.I. (2018) Quantum Physics: An Introduction Based on Photons. Springer, Berlin.
[67]  Davisson, C. and Germer, L.H. (1927) Diffraction of Electrons by a Crystal of Nickel. Physical Review, 30, 705-740.
https://doi.org/10.1103/PhysRev.30.705
[68]  Thomson, G.P. and Reid, A. (1927) Diffraction of Cathode Rays by a Thin Film. Nature, 119, 890.
https://doi.org/10.1038/119890a0

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413