全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Environmentally Friendly Bifunctional Catalyst for ORR and OER from Coconut Shell Particles

DOI: 10.4236/ampc.2022.125008, PP. 106-123

Keywords: Bifunctional Catalyst, Oxygen Reduction Reaction, Oxygen Evolution Reaction, Coconut Shells, Carbon-Based Oxygen Catalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

Catalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is?at the heart of key renewable energy technologies such as water splitting and rechargeable batteries. But developing a low-cost oxygen electrode catalyst with high activity at low overpotential remains a great challenge. Coconut shells can be utilized as suitable raw material to produce activated carbon for enhanced adsorption capacity, bulk density, and hardness to be used as regenerative fuel cells?running ORR and OER. The present work is designed to obtain an alternative to noble metal-based catalysts?by synthesizing electroactive N-doped porous carbon from coconut shells; the use of biodegradable raw material through a single-step activation followed by nitrogen doping provides a more economical and environmentally friendly route to produce green catalysts for fuel cell applications. In valorization of biomass for the development of novel catalytic materials, our aim is also to reduce the use of hazardous chemicals. N-doped activated carbon shows promising bifunctional catalyst for ORR and OER as low-cost noble-metal-free and carbon-based oxygen catalysts.

References

[1]  Ji, X., Lee, K.T., Holden, H., Zhang, L., Zhang, J., Botton, G.A., Couillard, M. and Nazar, L.F. (2010) Nanocrystalline Intermetallics on Mesoporous Carbon for Direct Formic Acid Fuel Cell Anodes. Nature Chemistry, 2, 286-293.
https://doi.org/10.1038/nchem.553
[2]  Gray, H.B. (2009) Powering the Planet with Solar Fuel. Nature Chemistry, 1, 7.
https://doi.org/10.1038/nchem.141
[3]  Kanan, M.W. and Nocera, D.G. (2008) In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science, 321, 1072-1075.
https://doi.org/10.1126/science.1162018
[4]  Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., Hamad-Schifferli, K. and Shao-Horn, Y. (2010) Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries. Journal of the American Chemical Society, 132, 12170-12171.
https://doi.org/10.1021/ja1036572
[5]  Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B. and Shao-Horn, Y. (2011) A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles, Science, 334, 1383-1385.
https://doi.org/10.1126/science.1212858
[6]  Gasteiger, H.A., Kocha, S.S., Sompalli, B. and Wagner, F.T. (2005) Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Applied Catalysis B: Environmental, 56, 9-35.
https://doi.org/10.1016/j.apcatb.2004.06.021
[7]  Ahn, J. and Holze, R. (1992) Bifunctional Electrodes for an Integrated Water-Electrolysis and Hydrogen-Oxygen Fuel Cell with a Solid Polymer Electrolyte. Journal of Applied Electrochemistry, 22, 1167-1174.
https://doi.org/10.1007/BF01297419
[8]  Long, C., Qi, D., Wei, T., Yan, J., Jiang, L. and Fan, Z. (2014) Nitrogen-Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Advanced Functional Materials, 24, 3953-3961.
https://doi.org/10.1002/adfm.201304269
[9]  Chen, L.F., Huang, Z.H., Liang, H.W., Gao, H.L. and Yu, S.H. (2014) Three-Dimen- sional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors. Advanced Functional Materials, 24, 5104-5111.
https://doi.org/10.1002/adfm.201400590
[10]  Liu, Q., Chen, C., Pan, F. and Zhang, J. (2015) Highly Efficient Oxygen Reduction on Porous Nitrogen-Doped Nanocarbons Directly Synthesized from Cellulose Nanocrystals and Urea. Electrochimica Acta, 170, 234-241.
https://doi.org/10.1016/j.electacta.2015.04.094
[11]  Alatalo, S.M., Qiu, K., Preuss, K., Marinovic, A., Sevilla, M., Sillanpaa, M., Guo, X. and Titirici, M.M. (2016) Soy Protein Directed Hydrothermal Synthesis of Porous Carbon Aerogels for Electrocatalytic Oxygen Reduction. Carbon, 96, 622-630.
https://doi.org/10.1016/j.carbon.2015.09.108
[12]  Nguyen, T.D., Shopsowitz, K.E. and MacLachlan, M.J. (2014) Mesoporous Nitrogen-Doped Carbon from Nanocrystalline Chitin Assemblies. Journal of Materials Chemistry A, 2, 5915-5921.
https://doi.org/10.1039/c3ta15255c
[13]  Yuan, H., Deng, L., Cai, X., Zhou, S., Chen, Y. and Yuan, Y. (2015) Nitrogen-Doped Carbon Sheets Derived from Chitin as Non-Metal Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. RSC Advances, 5, 56121-56129.
https://doi.org/10.1039/C5RA05461C
[14]  Primo, A., Atienzar, P., Sanchez, E., Delgado, J.M. and García, H. (2012) From Biomass Wastes to Large-Area, High Quality N-Doped Graphene: Catalyst-Free Carbonization of Chitosan Coatings on Arbitrary Substrates. Chemical Communications, 48, 9254-9256.
https://doi.org/10.1039/c2cc34978g
[15]  Rybarczyk, M.K., Lieder, M. and Jablonska, M. (2015) N-Doped Mesoporous Carbon Nanosheets Obtained by Pyrolysis of a Chitosan-Melamine Mixture for the Oxygen Reduction Reaction in Alkaline Media. RSC Advances, 5, 44969-44977.
https://doi.org/10.1039/C5RA05725F
[16]  Liu, Q., Duan, Y., Zhao, Q., Pan, F., Zhang, B. and Zhang, J. (2014) Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance. Langmuir, 30, 8238-8245.
https://doi.org/10.1021/la404995y
[17]  Yang, Y., Deng, Y., Tong, Z. and Wang, C. (2014) Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. ACS Sustainable Chemistry & Engineering, 2, 1729-1733.
https://doi.org/10.1021/sc500250b
[18]  Liu, X., Zhou, Y., Zhou, W., Li, L., Huang, S. and Chen, S. (2015) Biomass-Derived Nitrogen Self-Doped Porous Carbon as Effective Metal-Free Catalysts for Oxygen Reduction Reaction. Nanoscale, 7, 6136-6142.
https://doi.org/10.1039/C5NR00013K
[19]  Chen, P., Wang, L.K., Wang, G., Gao, M.R., Ge, J., Yuan, W.J., Shen, Y.H., Xie, A.J. and Yu, S.H. (2014) Nitrogen-Doped Nanoporous Carbon Nanosheets Derived from Plant Biomass: An Efficient Catalyst for Oxygen Reduction Reaction. Energy & Environmental Science, 7, 4095-4103.
https://doi.org/10.1039/C4EE02531H
[20]  Pan, F., Cao, Z., Zhao, Q., Liang, H. and Zhang, J. (2014) Nitrogen-Doped Porous Carbon Nanosheets Made from Biomass as Highly Active Electrocatalyst for Oxygen Reduction Reaction. Journal of Power Sources, 272, 8-15.
https://doi.org/10.1016/j.jpowsour.2014.07.180
[21]  Song, M.Y., Park, H.Y., Yang, D.S., Bhattacharjya, D. and Yu, J.S. (2014) Seaweed-Derived Heteroatom-Doped Highly Porous Carbon as an Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 7, 1755-1763.
https://doi.org/10.1002/cssc.201400049
[22]  Yang, K., Peng, J., Srinivasakannan, C., Zhang, L. Xia, H. and Duan, X. (2010) Preparation of High Surface Area Activated Carbon from Coconut Shells Using Microwave Heating. Bioresource Technology, 101, 6163-6169.
https://doi.org/10.1016/j.biortech.2010.03.001
[23]  Li, W., Yang, K., Peng, J., Zhang, L., Guo, S. and Xia, H. (2008) Effects of Carbonization Temperatures on Characteristics of Porosity in Coconut Shell Chars and Activated Carbons Derived from Carbonized Coconut Shell Chars. Industrial Crops and Products, 28, 190-198.
https://doi.org/10.1016/j.indcrop.2008.02.012
[24]  Prauchner, M.J. and Rodríguez-Reinoso, F. (2012) Chemical versus Physical Activation of Coconut Shell: A Comparative Study. Microporous and Mesoporous Materials, 152, 163-171.
https://doi.org/10.1016/j.micromeso.2011.11.040
[25]  Rout, T., Pradhan, D., Singh, R.K. and Kumari, N. (2016) Exhaustive Study of Products Obtained from Coconut Shell Pyrolysis. Journal of Environmental Chemical Engineering, 4, 3696-3705.
https://doi.org/10.1016/j.jece.2016.02.024
[26]  Heschel, W. and Klose, E. (1995) On the Suitability of Agricultural By-Products for the Manufacture of Granular Activated Carbon. Fuel, 74, 1786-1791.
https://doi.org/10.1016/0016-2361(95)80009-7
[27]  Sekhon, S.S., Kaur, P. and Park, J. (2021) From Coconut Shell Biomass to Oxygen Reduction Reaction Catalyst: Tuning Porosity and Nitrogen Doping. Renewable and Sustainable Energy Reviews, 147, Article ID: 111173.
https://doi.org/10.1016/j.rser.2021.111173
[28]  Madakson, P., Yawas, D.S. and Apasi, A. (2012) Characterization of Coconut Shell Ash for Potential Utilization in Metal Matrix Composites for Automotive Applications. International Journal of Engineering, Science and Technology, 4, 1190-1198.
[29]  Bakti, A.I. and Gareso, P.L. (2018) Characterization of Active Carbon Prepared from Coconuts Shells Using FTIR, XRD and SEM Techniques. Jurnal ilmiah pendidikan fisika Al-Biruni, 7, 33-39.
https://doi.org/10.24042/jipfalbiruni.v7i1.2459
[30]  Yang, M., Guo, L., Hu, G., Hu, X., Xu, L., Chen, J., Dai, W. and Fan, M. (2015) Highly Cost-Effective Nitrogen-Doped Porous Coconut Shell-Based CO2 Sorbent Synthesized by Combining Ammoxidation with KOH Activation. Environmental Science & Technology, 49, 7063-7070.
https://doi.org/10.1021/acs.est.5b01311
[31]  Shao,Y., Zhang, S., Engelhard, M.H., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. and Lin, Y. (2010) Nitrogen-Doped Graphene and Its Electrochemical Applications. Journal of Materials Chemistry, 20, 7491-7496.
https://doi.org/10.1039/c0jm00782j
[32]  Matter, P.H., Zhang, L. and Ozkan, U.S. (2006) The Role of Nanostructure in Nitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reaction. Journal of Catalysis, 239, 83-96.
https://doi.org/10.1016/j.jcat.2006.01.022
[33]  Kundu, S., Nagaiah, T.C., Xia, W., Wang, Y., Dommele, S.V., Bitter, J.H., Santa, M., Grundmeier, G., Bron, M. and Schuhmann, W. (2009) Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 113, 14302-14310.
https://doi.org/10.1021/jp811320d
[34]  Arrigo, R., Havecker, M., Schlogl, R. and Su, D.S. (2008) Dynamic Surface Rearrangement and Thermal Stability of Nitrogen Functional Groups on Carbon Nanotubes. ChemComm, 40, 4891-4893.
https://doi.org/10.1039/b812769g
[35]  Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R. and Poschl, U. (2005) Raman Micro Spectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information. Carbon, 43, 1731-1742.
https://doi.org/10.1016/j.carbon.2005.02.018
[36]  Fahmi, F., Dewayanti, N.A.A., Widiyastuti, W. and Setyawan, H. (2020) Preparation of Porous Graphene-Like Material from Coconut Shell Charcoals for Supercapacitors. Cogent Engineering, 7, Article ID: 1748962.
https://doi.org/10.1080/23311916.2020.1748962
[37]  Kumar, M.P., Kesavan, T., Kalita, G., Ragupathy, P., Narayanan, T.N. and Pattanayak, D.K. (2014) On the Large Capacitance of Nitrogen Doped Graphene Derived by a Facile Route. RSC Advances, 4, 38689-38697.
https://doi.org/10.1039/C4RA04927F
[38]  Sharifi, T., Nitze, F., Barzegar, H.R., Tai, W.C., Mazurkiewicz, M., Malolepszy, A., Stobinski, L. and Wagberg, T. (2012) Nitrogen Doped Multi Walled Carbon Nanotubes Produced by CVD-Correlating XPS and Raman Spectroscopy for the Study of Nitrogen Inclusion. Carbon, 50, 3535-3541.
https://doi.org/10.1016/j.carbon.2012.03.022
[39]  Valencia, A., Muniz-Valencia, R., Ceballos-Magana, S.G., Rojas-Mayorga, C.K., Bonilla-Petriciolet, A., Gonz'alez, J. and Aguayo-Villarreal, I.A. (2022) Cyclohexane and Benzene Separation by Fixed-Bed Adsorption on Activated Carbons Prepared from Coconut Shell. Environmental Technology & Innovation, 25, Article ID: 102076.
https://doi.org/10.1016/j.carbon.2012.03.022
[40]  Huang, Y., Ma, E. and Zhao, G. (2015) Thermal and Structure Analysis on Reaction Mechanisms during the Preparation of Activated Carbon Fibers by KOH Activation from Liquefied Wood-Based Fibers. Industrial Crops and Products, 69, 447-455.
https://doi.org/10.1016/j.indcrop.2015.03.002
[41]  Rawal, S., Joshi, B. and Kumar, Y. (2018) Synthesis and Characterization of Activated Carbon from the Biomass of Saccharum bengalense for Electrochemical Supercapacitors. Journal of Energy Storage, 20, 418-426.
https://doi.org/10.1016/j.est.2018.10.009
[42]  Freitas, J.V., Nogueira, F.G.E. and Farinas, C.S. (2019) Coconut Shell Activated Carbon as an Alternative Adsorbent of Inhibitors from Lignocellulosic Biomass Pretreatment. Industrial Crops and Products, 137, 16-23.
https://doi.org/10.1016/j.indcrop.2019.05.018
[43]  Pallar'es, J., Gonzalez-Cencerrado, A. and Arauzo, I. (2018) Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenergy, 115, 64-73.
https://doi.org/10.1016/j.biombioe.2018.04.015
[44]  Li, X., Wang, Y., Zhang, G., Sun, W., Bai, Y., Zheng, L., Han, X. and Wu, L. (2019) Influence of Mg-Promoted Ni-Based Catalyst Supported on Coconut Shell Carbon for CO2 Methanation. Chemistry Select, 4, 838-845.
https://doi.org/10.1002/slct.201803369
[45]  Saleh, T.A. (2018) Simultaneous Adsorptive Desulfurization of Diesel Fuel over Bimetallic Nanoparticles Loaded on Activated Carbon. Journal of Cleaner Production, 172, 2123-2132.
https://doi.org/10.1016/j.jclepro.2017.11.208
[46]  Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C. and Zhang, S. (2017) Copper Loaded on Activated Carbon as an Efficient Adsorbent for Removal of Methylene Blue. RSC Advances, 7, 14395-14405.
https://doi.org/10.1039/C7RA00287D
[47]  Jahan, M., Tominaka, S. and Henzie, J. (2016) Phase Pure α-Mn2O3 Prisms and Their Bifunctional Electrocatalytic Activity in Oxygen Evolution and Reduction Reactions. Dalton Transactions, 45, 18494-18501.
https://doi.org/10.1039/C6DT03158G
[48]  Gorlin, Y., Lassalle-Kaiser, B., Benck, J.D., Gul, S., Webb, S.M., Yachandra, V.K., Yano, J. and Jaramillo, T.F. (2013) n Situ X-Ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society, 135, 8525-8534.
https://doi.org/10.1021/ja3104632
[49]  Gorlin, Y. and Jaramillo, T.F. (2010) A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. Journal of the American Chemical Society, 132, 13612-13614.
https://doi.org/10.1021/ja104587v
[50]  Li, J., Liu, G., Liu, B., Min, Z., Qian, D., Jiang, J. and Li, J. (2018) Fe-Doped CoSe2 Nanoparticles Encapsulated in N-Doped Bamboo-Like Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Electrochimica Acta, 265, 577-585.
https://doi.org/10.1016/j.electacta.2018.01.211
[51]  Yang, W., Liu, X., Yue, X., Jia, J. and Guo, S. (2015) Bamboo-Like Carbon Nanotube/Fe3C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction. Journal of the American Chemical Society, 137, 1436-1439.
https://doi.org/10.1021/ja5129132
[52]  Li, J., Chen, J., Wang, H., Ren, Y., Liu, K., Tang, Y. and Shao, M. (2017) Fe/N Co-Doped Carbon Materials with Controllable Structure as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Al-Air Batteries. Energy Storage Mater. 8, 49-58.
https://doi.org/10.1016/j.ensm.2017.03.007
[53]  Li, Z., Sun, H., Wei, L., Jiang, W.J., Wu, M. and Hu, J.S. (2017) Lamellar Metal Organic Framework-Derived Fe-N-C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 9, 5272-5278.
https://doi.org/10.1021/acsami.6b15154
[54]  Yang, H.B., Miao, J., Hung, S.F., Chen, J., Tao, H.B., Wang, X., Zhang, L., Chen, R., Gao, J. and Chen, H.M. (2016) Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Science Advances, 2, e1501122.
https://doi.org/10.1126/sciadv.1501122
[55]  Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., Fu, C., Shen, Z., Yu, T. and Lin, J. (2011) Pyridinic N Doped Graphene: Synthesis, Electronic Structure, and Electrocatalytic Property. Journal of Materials Chemistry, 21, 8038-8044.
https://doi.org/10.1039/c1jm10845j
[56]  Okamoto, Y. (2009) First-Principles Molecular Dynamics Simulation of O2 Reduction on Nitrogen-Doped Carbon. Applied Surface Science, 256, 335-341.
https://doi.org/10.1016/j.apsusc.2009.08.027
[57]  Shao, Y., Sui, J., Yin, G. and Gao, Y. (2008) Nitrogen-Doped Carbon Nanostructures and Their Composites as Catalytic Materials for Proton Exchange Membrane Fuel Cell. Applied Catalysis B, 79, 89-99.
https://doi.org/10.1016/j.apcatb.2007.09.047
[58]  Arrigo, R., Havecker, M., Schlogl, R. and Su, D.S. (2008) Dynamic Surface Rearrangement and Thermal Stability of Nitrogen Functional Groups on Carbon Nanotubes. Chemical Communications, 40, 4891-4893.
https://doi.org/10.1039/b812769g
[59]  Niwa, H., Horiba, K., Harada, Y., Oshima, M., Ikeda, T., Terakura, K., Ozaki, J. and Miyata, S. (2009) X-Ray Absorption Analysis of Nitrogen Contribution to Oxygen Reduction Reaction in Carbon Alloy Cathode Catalysts for Polymer Electrolyte Fuel Cells. Journal of Power Sources, 187, 93-97.
https://doi.org/10.1016/j.jpowsour.2008.10.064
[60]  Gong, K., Du, F., Xia, Z., Durstock, M. and Dai, L. (2009) Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323, 760-764.
https://doi.org/10.1126/science.1168049
[61]  Maldonado, S. and Stevenson, K.J. (2005) Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes. The Journal of Physical Chemistry B, 109, 4707-4716.
https://doi.org/10.1021/jp044442z
[62]  Gao, F., Zhao, G.L. and Yang, S. (2014) Catalytic Reactions on the Open-Edge Sites of Nitrogen-Doped Carbon Nanotubes as Cathode Catalyst for Hydrogen Fuel Cells. ACS Catalysis, 4, 1267-1273.
https://doi.org/10.1021/cs500221m
[63]  Man, I.C., Su, H.Y., Calle‐Vallejo, F., Hansen, H.A., Martínez, J.I., Inoglu, N.G., Kitchin, J., Jaramillo, T.F., Norskov, J.K. and Rossmeisl, J. (2011) Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 3, 1159-1165.
https://doi.org/10.1002/cctc.201000397
[64]  Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S. and Strasser, P. (2010) The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem, 2, 724-761.
https://doi.org/10.1002/cctc.201000126
[65]  Lim, S., Yoon, S.H., Mochida, I. and Jung, D.H. (2009) Direct Synthesis and Structural Analysis of Nitrogen-Doped Carbon Nanofibers. Langmuir, 25, 8268-8273.
https://doi.org/10.1021/la900472d
[66]  Jiang, H., Yao, Y., Zhu, Y., Liu, Y., Su, Y., Yang, X. and Li, C. (2015) Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 7, 21511-21520.
https://doi.org/10.1021/acsami.5b06708
[67]  Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization. PANS, 103, 15729-15735.
https://doi.org/10.1073/pnas.0603395103
[68]  He, W., Xue, P., Du, H., Xu, L., Pang, M., Gao, X., Yu, J., Zhang, Z. and Huang, T. (2017) A Facile Method Prepared Nitrogen and Boron Doped Carbon Nano-Tube Based Catalysts for Oxygen Reduction. International Journal of Hydrogen Energy, 42, 4123-4132.
https://doi.org/10.1016/j.ijhydene.2017.01.134
[69]  Yang, J., Liu, D.J., Kariuki, N.N. and Chen, L.X. (2008) Aligned Carbon Nanotubes with Built-In FeN4 Active Sites for Electrocatalytic Reduction of Oxygen. Chemical Communications, 3, 329-331.
https://doi.org/10.1039/B713096A
[70]  Wu, G., More, K.L., Johnston, C.M. and Zelenay, P. (2011) High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 332, 443-447.
https://doi.org/10.1126/science.1200832

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133