全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of the Wind Energy Potential of Two Burundian Sites

DOI: 10.4236/epe.2022.145010, PP. 181-200

Keywords: Wind Shear Exponent, Two-Parameter Weibull PDFs, Statistical Tests, Wind Energy Potential, WT’s Energy Output and Capacity Factor, Cost of Electricity, Two Burundian Sites

Full-Text   Cite this paper   Add to My Lib

Abstract:

1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or Cf) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE

References

[1]  Plan National de Développement (PND Burundi 2018-2027) (2018, August 31) Annexe 2. 73-87.
https://www.presidence.gov.bi/wp-content/uploads/2018/08/PND-Burundi-2018-2027-Version-Finale.pdf
[2]  International Rankings of Burundi—2017; Burundi Data Portal.
https://burundi.opendataforafrica.org/data#menu=topic
[3]  Complete Vision Burundi 2025 (June 2011).
https://www.presidence.gov.bi/archives/IMG/pdf/Vision_Burundi_2025_complete_FR.pdf
[4]  République du Burundi, Cadre Stratégique de Croissance et de Lutte contre la Pauvreté, CSLP II: 2012-2015, Bilan de Mise en Œuvre.
https://www1.undp.org/content/dam/burundi/docs/publications/Rapport Bilan global du CSLPII_final.pdf
[5]  Mathews, S., Pandey, K.P. and Kumar, A.V. (2002) Analysis of Wind Regimes for Energy Estimation. Renewable Energy, 25, 381-399.
https://doi.org/10.1016/S0960-1481(01)00063-5
[6]  Karsli, V.M. and Geçit, C. (2003) An Investigation on Wind Power Potential of Nurdaği-Gaziantep, Turkey. Renewable Energy, 28, 823-830.
https://doi.org/10.1016/S0960-1481(02)00059-9
[7]  Teez, H.W., Harms, T.M. and Von Backström, T.W. (2003) Assessment of the Wind Power Potential at SANAE IV Base, Antarctica: A Technical and Economic Feasibility Study. Renewable Energy, 28, 2037-2061.
https://doi.org/10.1016/S0960-1481(03)00076-4
[8]  Toledo Velásquez, M., Hernández Rodriguez, J., Vega Del Carmen, M., Flores Murrieta, F.E. and Tolentino Eslava, G. (2016) Application of the Weibull Distribution to Estimate the Volume of Water Pumping by a Windmill. Journal of Power and Energy Engineering, 4, 36-51.
https://doi.org/10.4236/jpee.2016.49004
[9]  Kazet, M.Y., Mouangue, R., Kuitche, A. and Ndjaka, J.M. (2016) Wind Energy Resource Assessment in Ngaoundere Locality. Energy Procedia, 93, 74-81.
https://doi.org/10.1016/j.egypro.2016.07.152
[10]  Boudia, S.M., Berrached, S. and Bouri, S. (2016) On the Use of Wind Energy at Tlemsen, North-Western Region of Algeria. Energy Procedia, 93, 141-145.
https://doi.org/10.1016/j.egypro.2016.07.162
[11]  Gatoto, P., Lollchund, M.R. and Dalson, G.A. (2021) Wind Energy Potential Assessment of Some Sites in Burundi Using Statistical Modeling. Proceedings of 2021 IEEE PES/IAS Power Africa Virtual Conference, Nairobi, 23-27 August 2021, 219-223.
[12]  Ayala, M., Maldonado, J., Paccha, E. and Riba, C. (2017) Wind Power Resource Assessment in Complex Terrain: Villonaco Case-Study Using Computational Fluid Dynamics Analysis. Energy Procedia, 107, 41-48.
https://doi.org/10.1016/j.egypro.2016.12.127
[13]  Ilinca, A., McCarthy, E., Chaumel, J.-L. and Rétiveau, J.-L. (2003) Wind Potential Assessment of Quebec Province. Renewable Energy, 28, 1881-1897.
https://doi.org/10.1016/S0960-1481(03)00072-7
[14]  Farrugia, R.N. (2003) The Wind Shear Exponent in a Mediterranean Island Climate. Renewable Energy, 28, 647-653.
https://doi.org/10.1016/S0960-1481(02)00066-6
[15]  Chang, T.-J., Wu, Y.-T., Hsu, H.-Y., Chu, C.-R. and Liao, C.-M. (2003) Assessment of Wind Characteristics and Wind Turbine Characteristics in Taiwan. Renewable Energy, 28, 851-871.
https://doi.org/10.1016/S0960-1481(02)00184-2
[16]  Al-Mahamad, A. and Karmeh, H. (2003) Wind Energy Potential in Syria. Renewable Energy, 28, 1039-1046.
https://doi.org/10.1016/S0960-1481(02)00186-6
[17]  Ayik, A. , Ijumba, N., Kabiri, C. and Goffin, P. (2021) Preliminary Wind Resource Assessment in South Sudan Using Reanalysis Data and Statistical Methods. Renewable and Sustainable Energy Reviews, 138, Article ID: 110621.
https://doi.org/10.1016/j.rser.2020.110621
[18]  Azad, K., Rasul, M., Halder, P. and Sutariya, J. (2019) Assessment of Wind Energy Prospect by Weibull Distribution for Prospective Wind Sites in Australia. Energy Procedia, 160, 348-355.
https://doi.org/10.1016/j.egypro.2019.02.167
[19]  Parajuli, A. (2016) A Statistical Analysis of Wind Speed and Power Density Based on Weibull and Rayleigh Models of Jumla, Nepal. Energy and Power Engineering, 8, 271-282.
https://doi.org/10.4236/epe.2016.87026
[20]  Galarza, J. (2021) Assessment of Wind Energy Potential and the Application for Microturbines. International Journal of Electrical Engineering and Technology (IJEET), 12, 20-31.
https://doi.org/10.34218/IJEET.12.9.2021.003
[21]  Nielsen, M.A. (2011) Parameter Estimation for the Two-Parameter Weibull Distribution. Brigham Young University, Provo, 7-31.
http://scholarsarchive.byu.edu/etd
[22]  Lu, L., Zang, H. and Barnett, J. (2002) Investigation on the Wind Power Potential on Hong Kong Islands: An Analysis of Wind Power and Wind Turbine Characteristics. Renewable Energy, 27, 1-12.
https://doi.org/10.1016/S0960-1481(01)00164-1
[23]  Weisser, D. (2003) A Wind Energy Analysis of Grenada: An Estimation Using the Weibull Density Function. Renewable Energy, 28, 1801-1812.
https://doi.org/10.1016/S0960-1481(03)00016-8
[24]  Gamma Function Г(n) Table.
https://getcalc.com/statistics-gamma-function-table.htm
[25]  Bashahu, M. (2003) Statistical Comparison of Models for Estimating the Monthly Average Daily Diffuse Radiation at a Subtropical African Site. Solar Energy, 75, 43-51.
https://doi.org/10.1016/S0038-092X(03)00213-5
[26]  Bashahu, M. and Mpanzimana, D. (2009) Estimation of the Monthly Average Daily Solar Global Irradiation with Climatological Parameters at Some Burundian Stations. International Review of Physics, 3, 237-243.
[27]  Bashahu, M. and Buseke, M. (2016) Statistical Analysis of Hourly Wind Speed Data from Burundian Stations Using Beta Probability Density Functions. Modern Environmental Science and Engineering, 2, 740-746.
https://doi.org/10.15341/mese(2333-2581)/11.02.2016/005
[28]  Bashahu, M. and Ntirandekura, J. (2018) Statistical Analysis of Hourly Clearness Index and Diffuse Fraction Data Using Beta Probability Density Functions. Modern Environmental Science and Engineering, 4, 350-357.
[29]  Honercamp, J. (1999) Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. VHC Publishers, Weinheim, 511.
[30]  Critical Values of Student’s t Distribution with ν Degrees of Freedom (t1-α’, ν).
https://www.itl.nist.gov/div898/handbook/eda/section3
[31]  Kidmo, D.K., Deli, K., Raidandi, D. and Yaminyo, S.D. (2016) Wind Energy for Electricity Generation in the Far North Region of Cameroon. Energy Procedia, 93, 66-73.
https://doi.org/10.1016/j.egypro.2016.07.151
[32]  Gaddada, S. and Kodicherla, S.P.K. (2016) Wind Energy Potential and Cost Estimation of Wind Energy Conversion Systems for Electricity Generation in the Eight Selected Locations of Tigray Region (Ethiopia). Renewables: Wind, Water and Solar, 3, Article No. 10.
https://doi.org/10.1186/s40807-016-0030-8
[33]  Legourières, D. (1980) Energie Eolienne: Théorie, Conception et Calcul Pratique des Installations.Eyrolles, Paris, 7-17.
[34]  Park, J. (1981) The Wind Power Book. Cheshire Books, Fort Bragg, 49-55, 164.
[35]  Altaii, K. and Farrugia, R.N. (2003) Wind Characteristics on the Caribbean Island of Puerto Rico. Renewable Energy, 28, 1701-1710.
https://doi.org/10.1016/S0960-1481(03)00039-9
[36]  Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E. (2001) Wind Energy Handbook. Wiley, Hoboken, 19.
https://doi.org/10.1002/0470846062
[37]  D’Ambrosio, M. and Medaglia, M. (2010) Vertical Axis Wind Turbines: History, Technology and Applications. Högskolan-Halmstad, Halmstad, 27.
[38]  Classes of Wind Power Density at 10 m and 50 m, Table 1-1, p. 1.
[39]  Energy and Power Content of the Wind, M. Ragheb, pp. 3, 12-15.
http://mragheb.com
[40]  CNYD YDF-1500-87 Description, Wind Turbines.
https://en.wind-turbine.com/wind-turbine/11328/enyd-ydf-1500-87.html
[41]  E33/660 (Enercon), Wind Power.
https://www.thewindpower.net/turbine_en_1_enercon_e33-330.php
[42]  E48/800 (Enercon), Wind Power.
https://www.thewindpower.net/turbine_en_3_enercon_e48-800.php
[43]  Preliminary Design Specifications for the Windlite 10 kW DC Generator, March 2000.
https://www.researchgate.net/figure/WindLite-Rotor-Characteristics_tbl1_242076882
[44]  S95-2.1 MW Technical Specifications. Suzlon Energy Ltd., Annex 8, pp. 1-18.
https://www.thewindpower.net/turbine_en_766_suzlon_s95-2100.php
[45]  Specification Sheets for the P10-20, P12-25, P15-50 and P25-10 Wind Turbines. Polaris America LLC.
http://www.polarisamerica.com/turbines/technology
[46]  V47/660 (Vestas), Wind Power.
https://www.thewindpower.net/turbine_en_176_vestas_v47-660.php
[47]  V90-3.0 MW General Specification. Vestas Wind Systems A/S, 2004, pp. 1-31.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133