全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钝缀锦蛤TXNDC5基因克隆及溶藻弧菌胁迫下表达规律研究
Cloning of TXNDC5 Gene of Tapes dorsatus and Its Expression Analysis under the Stress of Vibrio alginolyticus

DOI: 10.12677/OJFR.2022.92005, PP. 37-47

Keywords: 钝缀锦蛤,硫氧还蛋白5,溶藻弧菌,免疫防御
Tapes dorsatus
, TXNDC5, Vibrio alginolyticus, Immune Defense

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究钝缀锦蛤(Tapes dorsatus) TXNDC5基因特征,本实验采用梯度PCR技术扩增获得TdTXNDC5基因的开放阅读框序列,其长度为1236 bp,可编码411个氨基酸残基。预测得知,钝缀锦蛤TXNDC5蛋白等电点为5.05,理论分子量为46.40 kD,分子中具有3个典型的PDI结构域,N末端具有1段长度为20 aa的信号肽。同源性分析结果显示,钝缀锦蛤TXNDC5蛋白与其它3种海水贝类的同源性为37.9%~70.8%,表明TXNDC5蛋白在不同种类的海水贝类物种中具有一定的保守性。基于TXNDC5蛋白的氨基酸序列构建系统发育树,结果显示钝缀锦蛤仅与硬壳蛤聚为一支。实时荧光定量PCR结果显示,TdTXNDC5基因在钝缀锦蛤的8种组织中均有表达,鳃的表达量最高,外套膜次之。溶藻弧菌胁迫下,TdTXNDC5基因在钝缀锦蛤鳃和内脏团组织中的表达量均在第3 h时达到峰值,外套膜在第6 h达到峰值。上述结果表明,TdTXNDC5基因可能参与了钝缀锦蛤应对细菌感染的过程,在钝缀锦蛤先天免疫防御中具有重要作用。
In order to explore the characteristics of TXNDC5 gene in Tapes dorsatus, gradient PCR was used to amplify the open reading frame sequence of TdTXNDC5 gene which was 1236 bp in length and could encode 411 amino acid residues. The isoelectric Point (pI) of TdTXNDC5 protein was 5.05 and the theoretical molecular weight was 46.40 kD. There were three typical PDI domains in TdTXNDC5 and a signal peptide composed of 20 amino acid residues at the N-terminal. The results of homology analysis showed that TXNDC5 protein of T. dorsatus had 37.9%~70.8% homology with the other three marine mollusks, indicating that TXNDC5 protein was conserved in different marine shellfish species. The phylogenetic tree was constructed based on the amino acid sequence of TXNDC5 protein, and the results showed that T. dorsatus was only clustered with Mercenaria mercenaria. Quantitative Real-time PCR results showed that TdTXNDC5 gene was expressed in all the 8 tissues of T. dorsatus, and the highest expression level was found in gill, followed by mantle. The expression of TdTXNDC5 gene in gill and visceral mass of T. dorsatus reached the peak at 3 h and in mantle at 6 h under the stress of Vibrio alginolyticus. These results suggest that TdTXNDC5 gene may be involved in the response to bacterial infection and play an important role in innate immune defense.

References

[1]  杨家林, 邹杰, 彭慧婧. 温度、盐度和体质量对钝缀锦蛤滤食率和同化率的影响[J]. 水产科学, 2019, 38(1): 104-108.
[2]  黄洋, 杜涛, 杨世平, 等. 钝缀锦蛤生态习性的初步研究[J]. 水产科学, 2008, 4(3): 175-178.
[3]  连昌朋, 吴韬, 王超奇, 等. 广西北海营盘钝缀锦蛤(Tapes conspersus)卵巢发育、卵子和卵黄发生的研究[J/OL]. 热带海洋学报, 2022: 1-11. https://kns.cnki.net/kcms/detail/44.1500.P.20220218.1133.002.html
[4]  庄志谦. 中国动物志软体动物门双壳纲帘蛤壳[M]. 北京: 科学出版社, 2001.
[5]  张玺, 齐忠彦, 李洁民, 等. 南海的双壳类软体动物[M]. 北京: 科学出版社, 1960.
[6]  巫旗生, 曾志南, 宁岳, 等. 钝缀锦蛤形态性状对活体质量的影响[J]. 水产科学, 2018, 37(1): 110-114.
[7]  Paterson, K.J. and Nell, J.A. (1997) Effect of Different Growing Techniques and Substrate Types on the Growth and Survival of the Clams Tapes dorsatus (Lamarck) and Katelysia rhytiphora (Lamy). Aquaculture Research, 28, 707-715.
https://doi.org/10.1111/j.1365-2109.1997.tb01093.x
[8]  Nell, J.A. and Paterson, K.J. (1997) Salinity Studies on the Clams Katelysia rhytiphora (Lamy) and Tapes dorsatus (Lamarck). Aquaculture Research, 28, 115-119.
https://doi.org/10.1111/j.1365-2109.1997.tb01023.x
[9]  Mikkelsen, P.M., Bieler, R., Kappner, I., et al. (2006) Phylogeny of Veneroidea (Mollusca: Bivalvia) Based on Morphology and Molecules. Zoological Journal of the Linnean Society, 148, 439-521.
https://doi.org/10.1111/j.1096-3642.2006.00262.x
[10]  Wang, Y., Yang, Y., Liu, H.Y., et al. (2020) Phylogeny of Veneridae (Bivalvia) Based on Mitochondrial Genomes. Zoologica Scripta, 50, 58-70.
https://doi.org/10.1111/zsc.12454
[11]  John, A.N., Wayne, A.O., Rosalind, E.H., et al. (1995) Hatchery Production of Diploid and Triploid Clams, Tapes dorsatus (Lamarck 1818): A Potential New Species for Aquaculture. Aquaculture, 130, 389-394.
https://doi.org/10.1016/0044-8486(95)92761-Q
[12]  巫旗生, 文宇, 曾志南, 等. 钝缀锦蛤繁殖周期和胚胎发育[J]. 中国水产科学, 2017, 24(3): 488-496.
[13]  陈爱平. 2004年中国水产养殖病害监测报告(二) [J]. 科学养鱼, 2005(10): 53-54.
[14]  陈爱平. 2006年中国水产养殖病害监测报告(一) [J]. 科学养鱼, 2007(7): 48-49.
[15]  高晓建, 姚东瑞, 孙晶晶, 等. 4株长牡蛎(Crassostreagigas)致病性哈维氏弧菌(Vibrio harveyi)鉴定及其毒力基因检测[J]. 海洋湖沼通报, 2015(3): 87-96.
[16]  李启蒙, 朱贝贝, 方皓, 等. 一起菲律宾蛤仔出血病病原的鉴定[J]. 山东畜牧兽医, 2017, 38(10): 7-8.
[17]  Wang, Q., Li, J. and Guo, H.M. (2019) Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways in Solen strictus (Gould, 1861) under Vibrio anguillarum. Fish and Shellfish Immunology, 88, 237-243.
https://doi.org/10.1016/j.fsi.2019.01.024
[18]  Chawsheen, H.A., Ying, Q., Jiang, H., et al. (2018) A Critical Role of the Thioredoxin Domain Containing Protein 5 (TXNDC5) in Redox Homeostasis and Cancer Development. Genes & Diseases, 5, 312-322.
https://doi.org/10.1016/j.gendis.2018.09.003
[19]  Knoblach, B., Keller, B.O., Groenendyk, J., et al. (2003) ERp19 and ERp46, New Members of the Thioredoxin Family of Endoplasmic Reticulum Proteins. Molecular & Cellular Proteomics, 2, 1104-1119.
https://doi.org/10.1074/mcp.M300053-MCP200
[20]  Yu, S., Ito, S., Wada, I., et al. (2018) ER-Resident Protein 46 (ERp46) Triggers the Mannose-Trimming Activity of ER Degradation-Enhancing Alpha-Mannosidase-Like Protein 3 (EDEM3). Journal Biological Chemistry, 293, 10663- 10674.
https://doi.org/10.1074/jbc.RA118.003129
[21]  Jennifer, L.M. (1995) Thioredoxin—A Fold for All Reasons. Structure, 3, 245-250.
https://doi.org/10.1016/S0969-2126(01)00154-X
[22]  Ravi, D., Muniyappa, H. and Das, K.C. (2005) Endogenous Thioredoxin Is Required for Redox Cycling of Anthracyclines and p53-Dependent Apoptosis in Cancer Cells. The Journal of Biological Chemistry, 280, 40084-40096.
https://doi.org/10.1074/jbc.M507192200
[23]  Nakamura, H. (2005) Thioredoxin and Its Related Molecules. Antioxidants & Redox Signaling, 7, 823-828.
https://doi.org/10.1089/ars.2005.7.823
[24]  Kulatunga, D.C.M., Dananjaya, S.H.S., Chamilani, N., et al. (2018) Stress-Immune Responses and DNA Protection Function of Thioredoxin Domain Containing 12 in Zebrafish (Danio rerio). Fish and Shellfish Immunology, 84, 1030- 1040.
https://doi.org/10.1016/j.fsi.2018.10.052
[25]  Wang, L., Dong, H., Song, G., et al. (2018) TXNDC5 Synergizes with HSC70 to Exacerbate the Inflammatory Phenotype of Synovial Fibroblasts in Rheumatoid Arthritis through NF-κB Signaling. Cellular & Molecular Immunology, 15, 685-696.
https://doi.org/10.1038/cmi.2017.20
[26]  Chen, X., Li, C., Liu, J., et al. (2021) Inhibition of ER Stress by Targeting the IRE1α-TXNDC5 Pathway Alleviates Crystalline Silica-Induced Pulmonary Fibrosis. International Immunopharmacology, 95, Article ID: 107519.
https://doi.org/10.1016/j.intimp.2021.107519
[27]  Lu, H., Gao, L. and Lv, J. (2021) Circ_0078710 Promotes the Development of Liver Cancer by Upregulating TXNDC5 via miR-431-5p. Annals of Hepatology, 27, Article ID: 100551.
https://doi.org/10.1016/j.aohep.2021.100551
[28]  Sandamalika, W.M.G., Samaraweera, A.V., Yang, H., et al. (2021) A Newly Discovered Teleost Disulfide Isomerase, Thioredoxin Domain Containing 5 (TXNDC5), from Big-Belly Seahorse (Hippocampus abdominalis): Insights into Its Molecular and Functional Properties and Immune Regulatory Functions. Developmental and Comparative Immunology, 114, Article ID: 103827.
https://doi.org/10.1016/j.dci.2020.103827
[29]  Liyanage, D.S., Omeka, W.K.M., Sandamalika, W.M.G., et al. (2021) PDI Family Thioredoxin from Disk Abalone (Haliotis Discus Discus): Responses to Stimulants (PAMPs, Bacteria, and Viral) and Functional Characterization. Fish & Shellfish Immunology, 120, 261-270.
https://doi.org/10.1016/j.fsi.2021.11.037
[30]  Lu, M., Yang, J.L., Wang, Z.L., et al. (2021) Cloning and Expression of the ChGstα and ChGstκ Genes in the Gills of Crassostrea hongkongensis under Nanoparticulate and Ionic Zn Stress. Comparative Biochemistry Physiology Part C, 244, Article ID: 109007.
https://doi.org/10.1016/j.cbpc.2021.109007
[31]  朱鹏, 胡舒, 乔瑞峰, 等. 卵形鲳鲹组织蛋白酶B基因的克隆及表达分析[J]. 水生生物学报, 2020, 44(2): 289-295.
[32]  李健, 常晓天. TXNDC5研究的新进展[J]. 中华医学遗传学杂志, 2017, 34(3): 448-450.
[33]  张永丽, 张若佳, 范焕彩, 等. TXNDC5-Prx2途径对前列腺癌细胞耐药性的调控[J]. 山东大学学报(医学版), 2017, 48(8): 473-478.
[34]  Zeng, Y., Ma, W., Ma, C., et al. (2021) Inhibition of TXNDC5 Attenuates Lipopolysaccharide-Induced Septic Shock by Altering Inflammatory Responses. Laboratory Investigation, 102, 422-431.
https://doi.org/10.1038/s41374-021-00711-5

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413