全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2022 

用于检测生物硫醇的荧光探针的研究进展
Research Progress of Fluorescent Probes for Detection of Biological Thiols

DOI: 10.12677/BP.2022.122007, PP. 54-62

Keywords: 生物硫醇,荧光,荧光探针,半胱氨酸,高半胱甘酸,谷胱甘肽
Biothiols
, Fluorescence, Flu-orescent Probes, Cysteine, Homocysteine, Glutathione

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物硫醇类化合物,包括L-半胱氨酸、L-同型半胱氨酸和谷胱甘肽等,在许多生理过程中起着十分重要的作用,因此高选择性、高准确度地识别和定量这类化合物对疾病的预防和诊疗起着重要的作用。对生物硫醇的分析方法有很多种,其中荧光探针法由于其选择性高、抗干扰能力强、准确度高且能够用于细胞或动物体内原位成像而受到了越来越多学者的重视。本篇综述按照与生物硫醇发生反应的结构位点,分别介绍了近些年来几种不同类型的荧光探针,不仅有利于生物硫醇分析方法的科学普及,还可以有效地促进新式荧光探针的结构设计和开发。
Biothiols, including L-cysteine, L-homocysteine, and glutathione, play important roles in many physiological processes. Therefore, the identification and quantification of such compounds with high selectivity and accuracy plays an important role in the prevention and diagnosis of diseases. There are many methods for the analysis of biological thiols, among which the fluorescent probe method has attracted more and more scholars due to its high selectivity, strong anti-interference ability, high accuracy and can be used for in situ imaging of cells or animals. This review summarizes several different types of fluorescent probes for the analysis of biothiols in recent years according to the structural sites that react with biothiols. This review is not only conducive to the scientific popularization of biological thiol analysis methods, but also can effectively promote the structural design and development of novel fluorescent probes.

References

[1]  Wood, Z.A., Schr?der, E., Robin Harris, J. and Poole, L.B. (2003) Structure, Mechanism and Regulation of Peroxire-doxins. Trends in Biochemical Sciences, 28, 32-40.
https://doi.org/10.1016/S0968-0004(02)00003-8
[2]  Suzuki, Y., Suda, K., Matsuyama, Y., Era, S. and Soejima, A. (2014) Close Relationship between Redox State of Human Serum Albumin and Serum Cysteine Levels in Non-Diabetic CKD Patients with Various Degrees of Renal Function. Clinical Nephrology, 82, 320-325.
https://doi.org/10.5414/CN108040
[3]  Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L.M., Tozzi, G. and Federici, G. (2001) Determination of Blood Total, Reduced, and Oxidized Gluta-thione in Pediatric Subjects. Clinical Chemistry, 47, 1467-1469.
https://doi.org/10.1093/clinchem/47.8.1467
[4]  Chung, T.K., Funk, M.A. and Baker, D.H. (1990) L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. The Journal of Nutrition, 120, 158-165.
https://doi.org/10.1093/jn/120.2.158
[5]  German, D.C., Bloch, C.A. and Kredich, N.M. (1983) Measurements of S-Adenosylmethionine and L-Homocysteine Metabolism in Cultured Human Lymphoid Cells. Journal of Biological Chemistry, 258, 10997-11003.
https://doi.org/10.1016/S0021-9258(17)44376-6
[6]  She, M., Wang, Z., Luo, T., Yin, B., Liu, P., Liu, J., Chen, F., Zhang, S. and Li, J. (2018) Fluorescent Probes Guided by a New Practical Performance Regulation Strategy to Monitor Glutathione in Living Systems. Chemical Science, 9, 8065-8070.
https://doi.org/10.1039/C8SC03421D
[7]  Shahrokhian, S. (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73, 5972-5978.
https://doi.org/10.1021/ac010541m
[8]  Yang, X., Guo, Y. and Strongin, R.M. (2011) Conjugate Addi-tion/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angewandte Chemie, 123, 10878-10881.
https://doi.org/10.1002/ange.201103759
[9]  Townsend, D.M., Tew, K.D. and Tapiero, H. (2003) The Importance of Glutathione in Human Disease. Biomedicine & Pharmacotherapy, 57, 145-155.
https://doi.org/10.1016/S0753-3322(03)00043-X
[10]  Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2013) Beta-Amyloidolysis and Glutathione in Alzheimer’s Disease. Journal of Blood Medicine, 4, 31-38.
https://doi.org/10.2147/JBM.S35496
[11]  Hansen, D.B. and Joullie, M.M. (2005) The Development of Novel Ninhydrin Analogues. Chemical Society Reviews, 34, 408-417.
https://doi.org/10.1039/B315496N
[12]  Yamato, S., Nakajima, M., Wakabayashi, H. and Shimada, K. (1992) Specific Detection of Acetyl-Coenzyme A by Reversed-Phase Ion-Pair High-Performance Liquid-Chromatography with an Immobilized Enzyme Reactor. Journal of Chromatography A, 590, 241-245.
https://doi.org/10.1016/0021-9673(92)85387-9
[13]  Harada, D., Naito, S., Kawauchi, Y., Ishi-kawa, K., Koshitani, O., Hiraoka, I. and Otagiri, M. (2001) Determination of Reduced, Protein-Unbound, and Total Concentrations of N-Acetyl-L-Cysteine and L-Cysteine in Rat Plasma by Postcolumn Ligand Substitution High-Performance Liquid Chromatography. Analytical Biochemistry, 290, 251-259.
https://doi.org/10.1006/abio.2000.4980
[14]  Parmentier, C., Leroy, P., Wellman, M. and Nicolas, A. (1998) Deter-mination of Cellular Thiols and Glutathione-Related Enzyme Activities: Versatility of High-Performance Liquid Chroma-tography Spectrofluorimetric Detection. Journal of Chromatography B, 719, 37-46.
https://doi.org/10.1016/S0378-4347(98)00414-9
[15]  Tsunoda, M. and Imai, K. (2005) Analytical Applications of Peroxyoxalate Chemiluminescence. Analytica Chimica Acta, 541, 13-23.
https://doi.org/10.1016/j.aca.2004.11.070
[16]  McDermott, G.P., Terry, J.M., Conlan, X.A., Barnett, N.W. and Francis, P.S. (2011) Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemilumi-nescence. Analytical Chemistry, 83, 6034-6039.
https://doi.org/10.1021/ac2010668
[17]  Kusmierek, K., Chwatko, G., Glowacki, R. and Bald, E. (2009) Determina-tion of Endogenous Thiols and Thiol Drugs in Urine by HPLC with Ultraviolet Detection. Journal of Chromatography B, 877, 3300-3308.
https://doi.org/10.1016/j.jchromb.2009.03.038
[18]  Glowacki, R. and Bald, E. (2009) Determination of N-AcetylCysteine and Main Endogenous Thiols in Human Plasma by HPLC with Ultraviolet Detection in the Form of Their S-Quinolinium Derivatives. Journal of Liquid Chromatography & Related Technologies, 32, 2530-2544.
https://doi.org/10.1080/10826070903249666
[19]  Norris, R.L. G., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A. and Charles, B. (2012) A Stable-Isotope HPLC-MS/MS Method to Simplify Storage of Human Whole Blood Samples for Glutathione Assay. Journal of Chromatography B, 898, 136-140.
https://doi.org/10.1016/j.jchromb.2012.04.003
[20]  Persichilli, S., Gervasoni, J., Iavarone, F., Zuppi, C. and Zap-pacosta, B. (2010) A Simplified Method for the Determination of total homoCysteine in Plasma by Electrospray Tandem Mass Spectrometry. Journal of Separation Science, 33, 3119-3124.
https://doi.org/10.1002/jssc.201000399
[21]  Yang, S.H., Wang, X., Li, E.S., Liu, X.Y. and Liu, J. (2022) Wa-ter-Dispersible Chlorophyll-Based Fluorescent Material Derived from Willow Seeds for Sensitive Analysis of Copper Ions and Biothiols in Food and Living Cells. Journal of Photochemistry And Photobiology A: Chemistry, 425, Article ID: 113664.
https://doi.org/10.1016/j.jphotochem.2021.113664
[22]  Qiao, L.Q., Yang, Y.X., Li, Y.P., Lv, X. and Hao, J.S. (2022) A Fluorescent Probe Capable of Naked Eye Recognition for the Selective Detection of Biothiols. Journal of Pho-tochemistry and Photobiology A: Chemistry, 425, Article ID: 113654.
https://doi.org/10.1016/j.jphotochem.2021.113654
[23]  Li, X.H., Han, X.F., Wu, W.N., Wang, Y., Fan, Y.C., Zhao, X.L. and Xu, Z.H. (2022) Simple Thiosemicarbazone “Switch” Sensing of Hg2+ and Biothiols in Pure Aqueous Solutions and Application to Imaging in Lysosomes. Journal of Molecular Structure, 1250, Article ID: 131811.
https://doi.org/10.1016/j.molstruc.2021.131811
[24]  Cifteci, A., Celik, S.E. and Apak, R. (2022) Gold-Nanoparticle Based Turn-On Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothi-ols: Measurement of Thiol/Disulfide Homeostasis. Analytical Letters, 55, 648-664.
https://doi.org/10.1080/00032719.2021.1958830
[25]  Zhuo, Y.H., Zhang, Y.Y., Feng, Y.D., Xu, Y.Q., You, Q.H., Zhang, L., Huang, H.B. and Lin, L.L. (2021) A 3,5-dinitropyridin-2yl Substituted Naphthalimide-Based Fluorescent Probe for the Selective Detection of Biothiols and Its Application in Cell-Imaging. RSC Advances, 11, 9290-9295.
https://doi.org/10.1039/D1RA00010A
[26]  Hong, J.-A., Kim, M.-J., Eo, J. and Lee, J. (2018) A Turn-On Fluo-rescent Probe for Live-Cell Imaging of Biothiols. Bulletin of the Korean Chemical Society, 39, 425-426.
https://doi.org/10.1002/bkcs.11429
[27]  Jung, H.S., Pradhan, T., Han, J.H., Heo, K.J., Lee, J.H., Kang, C. and Kim, J.S. (2012) Molecular Modulated Cysteine-Selective Fluorescent Probe. Biomaterials, 33, 8495-8502.
https://doi.org/10.1016/j.biomaterials.2012.08.009
[28]  Kang, J., Huo, F., Chao, J. and Yin, C. (2018) Nitroole-fin-Based Bodipy as a Novel Water-Soluble Ratiometric Fluorescent Probe for Detection of Endogenous Thiols. Spec-trochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 195, 16-20.
https://doi.org/10.1016/j.saa.2018.01.052
[29]  Wu, X., Shu, H., Zhou, B., Geng, Y., Bao, X. and Zhu, J. (2016) Design and Synthesis of a New Rhodamine B-Based Fluorescent Probe for Selective Detection of Glutathione and Its Application for Live Cell Imaging. Sensors and Actuators B, 237, 431-442.
https://doi.org/10.1016/j.snb.2016.06.161
[30]  Liang, B., Wang, B., Ma, Q., Xie, C., Li, X. and Wang, S. (2018) A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living cells Based on a 1,8-Naphthalimide Derivative. Spectrochimica Acta Part A, 192, 67-74.
https://doi.org/10.1016/j.saa.2017.10.044
[31]  Liu, X., Tian, H., Yang, L., Su, Y., Guo, M. and Song, X. (2017) An ESIPT-Based Fluorescent Probe for Sensitive and Selective Detection of Cys/Hcy over GSH with a Red Emission and a Large Stokes Shift. Tetrahedron Letters, 58, 3209-3213.
https://doi.org/10.1016/j.tetlet.2017.06.082
[32]  Wang, F., Feng, C., Lu, L., Xu, Z. and Zhang, W. (2017) A Rati-ometric Fluorescent Probe for Rapid and Sensitive Detection of Biothiols in Fetal Bovine Serum. Talanta, 169, 149-155.
https://doi.org/10.1016/j.talanta.2017.03.080
[33]  Chen, D., Long, Z., Sun, Y., Luo, Z. and Lou, X. (2019) A Red-Emission Probe for Intracellular Biothiols Imaging with a Large Stokes Shift. Journal of Photochemistry And Pho-tobiology A: Chemistry, 368, 90-96.
https://doi.org/10.1016/j.jphotochem.2018.09.030
[34]  Liang, F., Jiao, S., Jin, D., Dong, L., Lin, S., Song, D. and Ma, P. (2020) A Novel Near-Infrared Fluorescent Probe for the Dynamic Monitoring of the Concentration of Glutathione in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, Article ID: 117403.
https://doi.org/10.1016/j.saa.2019.117403
[35]  Ren, A., Zhu, D., Zhong, X., Xiong, Y. and Duan, Z. (2019) A Novel Fluorescent Turn-On Probe for Imaging Biothiols Based on SNAr Substitution-Skeletal Rearrangement Strategy. Analytical Methods, 11, 262-267.
https://doi.org/10.1039/C8AY02413H
[36]  Wang, C., Xia, X., Luo, J. and Qian, Y. (2018) A Novel Near-Infrared Styryl-BODIPY Fluorescent Probe for Discrimination of GSH and Its Application in livIng Cells. Dyes and Pigments, 152, 85-92.
https://doi.org/10.1016/j.dyepig.2018.01.034
[37]  Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Juan, O.-Y. and Liu, J. (2016) Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88, 9746-9752.
https://doi.org/10.1021/acs.analchem.6b02646
[38]  Huang, Z., Wu, C.Y., Li, Y.Q., Zhou, Z.L., Xie, R.H., Pang, X., Xu, H., Li, H.T. and Zhang, Y.Y. (2019) A Fluorescent Probe for the Specific Detection of Cysteine in Human Serum Samples. Analytical Methods, 11, 3280-3285.
https://doi.org/10.1039/C9AY00659A
[39]  Barve, A., Lowry, M., Escobedo, J.O., Huynh, K.T., Hakuna, L. and Strongin, R.M. (2014) Differences in Heterocycle Basicity Distinguish homoCysteine from Cysteine Using Alde-hyde-Bearing Fluorophores. Chemical Communications, 50, 8219-8222.
https://doi.org/10.1039/C4CC03527E
[40]  Zhang, H., Xia, X., Zhao, H., Zhang, G.-N., Jiang, D.-Y., Xue, X.-Y. and Zhang, J. (2019) A Near-Infrared Fluorescent Probe Based on SNAr Reaction for H2S/GSH Detection in Living Cells and Zebrafish. Dyes and Pigments, 163, 183-189.
https://doi.org/10.1016/j.dyepig.2018.11.050
[41]  Zhai, L., Shi, Z., Tu, Y. and Pu, S. (2019) A Dual Emission Fluorescent Probe Enables Simultaneous Detection and Discrimina-tion of Cys/Hcy and GSH and Its Application in Cell Imaging. Dyes and Pigments, 165, 164-171.
https://doi.org/10.1016/j.dyepig.2019.02.010
[42]  Fujikawa, Y., Terakado, K., Nampo, T., Mori, M. and Inoue, H. (2019) 4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity. Talanta, 204, 633-640.
https://doi.org/10.1016/j.talanta.2019.06.059
[43]  Sheng, X., Chen, D., Cao, M., Zhang, Y., Han, X., Chen, X., Liu, S., Chen, H. and Yin, J. (2016) A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glu-tathione in Living Cells. Chinese Journal of Chemistry, 34, 594-598.
https://doi.org/10.1002/cjoc.201500733
[44]  Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S. and Huang, D. (2018) Selective Detection and Quantification of Tryptophan and Cysteine with Pyrenedione as a Turn-On Fluorescent Probe. Sensors Actuators B: Chem, 259, 768-774.
https://doi.org/10.1016/j.snb.2017.12.059
[45]  Yang, L., Qu, W.S., Zhang, X., Hang, Y.D. and Hua, J.L. (2015) Constructing a FRET-Based Molecular Chemodosimeter for Cysteine over Homocysteine and Glutathione by Naph-thalimide and Phenazine Derivatives. Analyst, 140, 182-189.
https://doi.org/10.1039/C4AN01732C
[46]  Yin, C., Tang, Y.F., Li, X.Z., Yang, Z., Li, J., Li, X., Huang, W. and Fan, Q.L. (2018) A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. Small, 14, Article ID: 1703400.
https://doi.org/10.1002/smll.201703400
[47]  Lee, J.H., Lim, C.S., Tian, Y.S., Han, J.H. and Cho, B.R. (2010) A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132, 1216-1217.
https://doi.org/10.1021/ja9090676
[48]  Wang, R., Chen, L., Liu, P., Zhang, Q. and Wang, Y. (2012) Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tis-sues. Chemistry, 18, 11343-11349.
https://doi.org/10.1002/chem.201200671
[49]  Tian, Y., Zhu, B.C., Yang, W., Jing, J. and Zhang, X.L. (2018) A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sensors and Actuators B: Chemical, 262, 345-349.
https://doi.org/10.1016/j.snb.2018.01.181
[50]  Mei, Y., Li, H., Song, C.Z., Chen, X.G. and Song, Q.H. (2021) An 8-Arylselenium BODIPY Fluorescent Probe for Rapid and Sensitive Discrimination of Biothiols in Living Cells. Chem-ical Communications, 57, 10198-10201.
https://doi.org/10.1039/D1CC03912A
[51]  Huang, H., Shi, F.P., Li, Y.A., Niu, L., Gao, Y., Shah, S.M. and Su, X.G. (2013) Water-Soluble Conjugated Polymer-Cu(II) System as a Turn-On Fluorescence Probe for Label-Free Detec-tion of Glutathione and Cysteine in Biological Fluids. Sensors and Actuators B: Chemical, 178, 532-540.
https://doi.org/10.1016/j.snb.2013.01.003
[52]  Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y. and Zhao, X. (2017) A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biolog-ical Thiols. Sensors Actuators B: Chem, 250, 132-138.
https://doi.org/10.1016/j.snb.2017.04.147
[53]  Wood, Z.A., Schr?der, E., Robin Harris, J. and Poole, L.B. (2003) Structure, Mechanism and Regulation of Peroxire-doxins. Trends in Biochemical Sciences, 28, 32-40.
https://doi.org/10.1016/S0968-0004(02)00003-8
[54]  Suzuki, Y., Suda, K., Matsuyama, Y., Era, S. and Soejima, A. (2014) Close Relationship between Redox State of Human Serum Albumin and Serum Cysteine Levels in Non-Diabetic CKD Patients with Various Degrees of Renal Function. Clinical Nephrology, 82, 320-325.
https://doi.org/10.5414/CN108040
[55]  Pastore, A., Piemonte, F., Locatelli, M., Lo Russo, A., Gaeta, L.M., Tozzi, G. and Federici, G. (2001) Determination of Blood Total, Reduced, and Oxidized Gluta-thione in Pediatric Subjects. Clinical Chemistry, 47, 1467-1469.
https://doi.org/10.1093/clinchem/47.8.1467
[56]  Chung, T.K., Funk, M.A. and Baker, D.H. (1990) L-2-Oxothiazolidine-4-Carboxylate as a Cysteine Precursor: Efficacy for Growth and Hepatic Glutathione Synthesis in Chicks and Rats. The Journal of Nutrition, 120, 158-165.
https://doi.org/10.1093/jn/120.2.158
[57]  German, D.C., Bloch, C.A. and Kredich, N.M. (1983) Measurements of S-Adenosylmethionine and L-Homocysteine Metabolism in Cultured Human Lymphoid Cells. Journal of Biological Chemistry, 258, 10997-11003.
https://doi.org/10.1016/S0021-9258(17)44376-6
[58]  She, M., Wang, Z., Luo, T., Yin, B., Liu, P., Liu, J., Chen, F., Zhang, S. and Li, J. (2018) Fluorescent Probes Guided by a New Practical Performance Regulation Strategy to Monitor Glutathione in Living Systems. Chemical Science, 9, 8065-8070.
https://doi.org/10.1039/C8SC03421D
[59]  Shahrokhian, S. (2001) Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode. Analytical Chemistry, 73, 5972-5978.
https://doi.org/10.1021/ac010541m
[60]  Yang, X., Guo, Y. and Strongin, R.M. (2011) Conjugate Addi-tion/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine. Angewandte Chemie, 123, 10878-10881.
https://doi.org/10.1002/ange.201103759
[61]  Townsend, D.M., Tew, K.D. and Tapiero, H. (2003) The Importance of Glutathione in Human Disease. Biomedicine & Pharmacotherapy, 57, 145-155.
https://doi.org/10.1016/S0753-3322(03)00043-X
[62]  Lasierra-Cirujeda, J., Coronel, P., Aza, M. and Gimeno, M. (2013) Beta-Amyloidolysis and Glutathione in Alzheimer’s Disease. Journal of Blood Medicine, 4, 31-38.
https://doi.org/10.2147/JBM.S35496
[63]  Hansen, D.B. and Joullie, M.M. (2005) The Development of Novel Ninhydrin Analogues. Chemical Society Reviews, 34, 408-417.
https://doi.org/10.1039/B315496N
[64]  Yamato, S., Nakajima, M., Wakabayashi, H. and Shimada, K. (1992) Specific Detection of Acetyl-Coenzyme A by Reversed-Phase Ion-Pair High-Performance Liquid-Chromatography with an Immobilized Enzyme Reactor. Journal of Chromatography A, 590, 241-245.
https://doi.org/10.1016/0021-9673(92)85387-9
[65]  Harada, D., Naito, S., Kawauchi, Y., Ishi-kawa, K., Koshitani, O., Hiraoka, I. and Otagiri, M. (2001) Determination of Reduced, Protein-Unbound, and Total Concentrations of N-Acetyl-L-Cysteine and L-Cysteine in Rat Plasma by Postcolumn Ligand Substitution High-Performance Liquid Chromatography. Analytical Biochemistry, 290, 251-259.
https://doi.org/10.1006/abio.2000.4980
[66]  Parmentier, C., Leroy, P., Wellman, M. and Nicolas, A. (1998) Deter-mination of Cellular Thiols and Glutathione-Related Enzyme Activities: Versatility of High-Performance Liquid Chroma-tography Spectrofluorimetric Detection. Journal of Chromatography B, 719, 37-46.
https://doi.org/10.1016/S0378-4347(98)00414-9
[67]  Tsunoda, M. and Imai, K. (2005) Analytical Applications of Peroxyoxalate Chemiluminescence. Analytica Chimica Acta, 541, 13-23.
https://doi.org/10.1016/j.aca.2004.11.070
[68]  McDermott, G.P., Terry, J.M., Conlan, X.A., Barnett, N.W. and Francis, P.S. (2011) Direct Detection of Biologically Significant Thiols and Disulfides with Manganese(IV) Chemilumi-nescence. Analytical Chemistry, 83, 6034-6039.
https://doi.org/10.1021/ac2010668
[69]  Kusmierek, K., Chwatko, G., Glowacki, R. and Bald, E. (2009) Determina-tion of Endogenous Thiols and Thiol Drugs in Urine by HPLC with Ultraviolet Detection. Journal of Chromatography B, 877, 3300-3308.
https://doi.org/10.1016/j.jchromb.2009.03.038
[70]  Glowacki, R. and Bald, E. (2009) Determination of N-AcetylCysteine and Main Endogenous Thiols in Human Plasma by HPLC with Ultraviolet Detection in the Form of Their S-Quinolinium Derivatives. Journal of Liquid Chromatography & Related Technologies, 32, 2530-2544.
https://doi.org/10.1080/10826070903249666
[71]  Norris, R.L. G., Paul, M., George, R., Moore, A., Pinkerton, R., Haywood, A. and Charles, B. (2012) A Stable-Isotope HPLC-MS/MS Method to Simplify Storage of Human Whole Blood Samples for Glutathione Assay. Journal of Chromatography B, 898, 136-140.
https://doi.org/10.1016/j.jchromb.2012.04.003
[72]  Persichilli, S., Gervasoni, J., Iavarone, F., Zuppi, C. and Zap-pacosta, B. (2010) A Simplified Method for the Determination of total homoCysteine in Plasma by Electrospray Tandem Mass Spectrometry. Journal of Separation Science, 33, 3119-3124.
https://doi.org/10.1002/jssc.201000399
[73]  Yang, S.H., Wang, X., Li, E.S., Liu, X.Y. and Liu, J. (2022) Wa-ter-Dispersible Chlorophyll-Based Fluorescent Material Derived from Willow Seeds for Sensitive Analysis of Copper Ions and Biothiols in Food and Living Cells. Journal of Photochemistry And Photobiology A: Chemistry, 425, Article ID: 113664.
https://doi.org/10.1016/j.jphotochem.2021.113664
[74]  Qiao, L.Q., Yang, Y.X., Li, Y.P., Lv, X. and Hao, J.S. (2022) A Fluorescent Probe Capable of Naked Eye Recognition for the Selective Detection of Biothiols. Journal of Pho-tochemistry and Photobiology A: Chemistry, 425, Article ID: 113654.
https://doi.org/10.1016/j.jphotochem.2021.113654
[75]  Li, X.H., Han, X.F., Wu, W.N., Wang, Y., Fan, Y.C., Zhao, X.L. and Xu, Z.H. (2022) Simple Thiosemicarbazone “Switch” Sensing of Hg2+ and Biothiols in Pure Aqueous Solutions and Application to Imaging in Lysosomes. Journal of Molecular Structure, 1250, Article ID: 131811.
https://doi.org/10.1016/j.molstruc.2021.131811
[76]  Cifteci, A., Celik, S.E. and Apak, R. (2022) Gold-Nanoparticle Based Turn-On Fluorometric Sensor for Quantification of Sulfhydryl and Disulfide Forms of Biothi-ols: Measurement of Thiol/Disulfide Homeostasis. Analytical Letters, 55, 648-664.
https://doi.org/10.1080/00032719.2021.1958830
[77]  Zhuo, Y.H., Zhang, Y.Y., Feng, Y.D., Xu, Y.Q., You, Q.H., Zhang, L., Huang, H.B. and Lin, L.L. (2021) A 3,5-dinitropyridin-2yl Substituted Naphthalimide-Based Fluorescent Probe for the Selective Detection of Biothiols and Its Application in Cell-Imaging. RSC Advances, 11, 9290-9295.
https://doi.org/10.1039/D1RA00010A
[78]  Hong, J.-A., Kim, M.-J., Eo, J. and Lee, J. (2018) A Turn-On Fluo-rescent Probe for Live-Cell Imaging of Biothiols. Bulletin of the Korean Chemical Society, 39, 425-426.
https://doi.org/10.1002/bkcs.11429
[79]  Jung, H.S., Pradhan, T., Han, J.H., Heo, K.J., Lee, J.H., Kang, C. and Kim, J.S. (2012) Molecular Modulated Cysteine-Selective Fluorescent Probe. Biomaterials, 33, 8495-8502.
https://doi.org/10.1016/j.biomaterials.2012.08.009
[80]  Kang, J., Huo, F., Chao, J. and Yin, C. (2018) Nitroole-fin-Based Bodipy as a Novel Water-Soluble Ratiometric Fluorescent Probe for Detection of Endogenous Thiols. Spec-trochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 195, 16-20.
https://doi.org/10.1016/j.saa.2018.01.052
[81]  Wu, X., Shu, H., Zhou, B., Geng, Y., Bao, X. and Zhu, J. (2016) Design and Synthesis of a New Rhodamine B-Based Fluorescent Probe for Selective Detection of Glutathione and Its Application for Live Cell Imaging. Sensors and Actuators B, 237, 431-442.
https://doi.org/10.1016/j.snb.2016.06.161
[82]  Liang, B., Wang, B., Ma, Q., Xie, C., Li, X. and Wang, S. (2018) A Lysosome-Targetable Turn-On Fluorescent Probe for the Detection of Thiols in Living cells Based on a 1,8-Naphthalimide Derivative. Spectrochimica Acta Part A, 192, 67-74.
https://doi.org/10.1016/j.saa.2017.10.044
[83]  Liu, X., Tian, H., Yang, L., Su, Y., Guo, M. and Song, X. (2017) An ESIPT-Based Fluorescent Probe for Sensitive and Selective Detection of Cys/Hcy over GSH with a Red Emission and a Large Stokes Shift. Tetrahedron Letters, 58, 3209-3213.
https://doi.org/10.1016/j.tetlet.2017.06.082
[84]  Wang, F., Feng, C., Lu, L., Xu, Z. and Zhang, W. (2017) A Rati-ometric Fluorescent Probe for Rapid and Sensitive Detection of Biothiols in Fetal Bovine Serum. Talanta, 169, 149-155.
https://doi.org/10.1016/j.talanta.2017.03.080
[85]  Chen, D., Long, Z., Sun, Y., Luo, Z. and Lou, X. (2019) A Red-Emission Probe for Intracellular Biothiols Imaging with a Large Stokes Shift. Journal of Photochemistry And Pho-tobiology A: Chemistry, 368, 90-96.
https://doi.org/10.1016/j.jphotochem.2018.09.030
[86]  Liang, F., Jiao, S., Jin, D., Dong, L., Lin, S., Song, D. and Ma, P. (2020) A Novel Near-Infrared Fluorescent Probe for the Dynamic Monitoring of the Concentration of Glutathione in Living Cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, Article ID: 117403.
https://doi.org/10.1016/j.saa.2019.117403
[87]  Ren, A., Zhu, D., Zhong, X., Xiong, Y. and Duan, Z. (2019) A Novel Fluorescent Turn-On Probe for Imaging Biothiols Based on SNAr Substitution-Skeletal Rearrangement Strategy. Analytical Methods, 11, 262-267.
https://doi.org/10.1039/C8AY02413H
[88]  Wang, C., Xia, X., Luo, J. and Qian, Y. (2018) A Novel Near-Infrared Styryl-BODIPY Fluorescent Probe for Discrimination of GSH and Its Application in livIng Cells. Dyes and Pigments, 152, 85-92.
https://doi.org/10.1016/j.dyepig.2018.01.034
[89]  Xie, J.-Y., Li, C.-Y., Li, Y.-F., Fei, J., Xu, F., Juan, O.-Y. and Liu, J. (2016) Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues. Analytical Chemistry, 88, 9746-9752.
https://doi.org/10.1021/acs.analchem.6b02646
[90]  Huang, Z., Wu, C.Y., Li, Y.Q., Zhou, Z.L., Xie, R.H., Pang, X., Xu, H., Li, H.T. and Zhang, Y.Y. (2019) A Fluorescent Probe for the Specific Detection of Cysteine in Human Serum Samples. Analytical Methods, 11, 3280-3285.
https://doi.org/10.1039/C9AY00659A
[91]  Barve, A., Lowry, M., Escobedo, J.O., Huynh, K.T., Hakuna, L. and Strongin, R.M. (2014) Differences in Heterocycle Basicity Distinguish homoCysteine from Cysteine Using Alde-hyde-Bearing Fluorophores. Chemical Communications, 50, 8219-8222.
https://doi.org/10.1039/C4CC03527E
[92]  Zhang, H., Xia, X., Zhao, H., Zhang, G.-N., Jiang, D.-Y., Xue, X.-Y. and Zhang, J. (2019) A Near-Infrared Fluorescent Probe Based on SNAr Reaction for H2S/GSH Detection in Living Cells and Zebrafish. Dyes and Pigments, 163, 183-189.
https://doi.org/10.1016/j.dyepig.2018.11.050
[93]  Zhai, L., Shi, Z., Tu, Y. and Pu, S. (2019) A Dual Emission Fluorescent Probe Enables Simultaneous Detection and Discrimina-tion of Cys/Hcy and GSH and Its Application in Cell Imaging. Dyes and Pigments, 165, 164-171.
https://doi.org/10.1016/j.dyepig.2019.02.010
[94]  Fujikawa, Y., Terakado, K., Nampo, T., Mori, M. and Inoue, H. (2019) 4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity. Talanta, 204, 633-640.
https://doi.org/10.1016/j.talanta.2019.06.059
[95]  Sheng, X., Chen, D., Cao, M., Zhang, Y., Han, X., Chen, X., Liu, S., Chen, H. and Yin, J. (2016) A Near Infrared Cyanine-Based Fluorescent Probe for Highly Selectively Detecting Glu-tathione in Living Cells. Chinese Journal of Chemistry, 34, 594-598.
https://doi.org/10.1002/cjoc.201500733
[96]  Zhang, Y., Yao, W., Liang, D., Sun, M., Wang, S. and Huang, D. (2018) Selective Detection and Quantification of Tryptophan and Cysteine with Pyrenedione as a Turn-On Fluorescent Probe. Sensors Actuators B: Chem, 259, 768-774.
https://doi.org/10.1016/j.snb.2017.12.059
[97]  Yang, L., Qu, W.S., Zhang, X., Hang, Y.D. and Hua, J.L. (2015) Constructing a FRET-Based Molecular Chemodosimeter for Cysteine over Homocysteine and Glutathione by Naph-thalimide and Phenazine Derivatives. Analyst, 140, 182-189.
https://doi.org/10.1039/C4AN01732C
[98]  Yin, C., Tang, Y.F., Li, X.Z., Yang, Z., Li, J., Li, X., Huang, W. and Fan, Q.L. (2018) A Single Composition Architecture-Based Nanoprobe for Ratiometric Photoacoustic Imaging of Glutathione (GSH) in Living Mice. Small, 14, Article ID: 1703400.
https://doi.org/10.1002/smll.201703400
[99]  Lee, J.H., Lim, C.S., Tian, Y.S., Han, J.H. and Cho, B.R. (2010) A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132, 1216-1217.
https://doi.org/10.1021/ja9090676
[100]  Wang, R., Chen, L., Liu, P., Zhang, Q. and Wang, Y. (2012) Sensitive Near-Infrared Fluorescent Probes for Thiols Based on Se-N Bond Cleavage: Imaging in Living Cells and Tis-sues. Chemistry, 18, 11343-11349.
https://doi.org/10.1002/chem.201200671
[101]  Tian, Y., Zhu, B.C., Yang, W., Jing, J. and Zhang, X.L. (2018) A Fluorescent Probe for Differentiating Cys, Hcy and GSH via a Stepwise Interaction. Sensors and Actuators B: Chemical, 262, 345-349.
https://doi.org/10.1016/j.snb.2018.01.181
[102]  Mei, Y., Li, H., Song, C.Z., Chen, X.G. and Song, Q.H. (2021) An 8-Arylselenium BODIPY Fluorescent Probe for Rapid and Sensitive Discrimination of Biothiols in Living Cells. Chem-ical Communications, 57, 10198-10201.
https://doi.org/10.1039/D1CC03912A
[103]  Huang, H., Shi, F.P., Li, Y.A., Niu, L., Gao, Y., Shah, S.M. and Su, X.G. (2013) Water-Soluble Conjugated Polymer-Cu(II) System as a Turn-On Fluorescence Probe for Label-Free Detec-tion of Glutathione and Cysteine in Biological Fluids. Sensors and Actuators B: Chemical, 178, 532-540.
https://doi.org/10.1016/j.snb.2013.01.003
[104]  Yu, X., Wang, K., Cao, D., Liu, Z., Guan, R., Wu, Q., Xu, Y., Sun, Y. and Zhao, X. (2017) A Diethylamino Pyridine Formyl Schiff Base as Selective Recognition Chemosensor for Biolog-ical Thiols. Sensors Actuators B: Chem, 250, 132-138.
https://doi.org/10.1016/j.snb.2017.04.147

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413