全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

第一性原理计算Cu元素含量对高熵合金AlFeTiCrZnCux力学性能的影响
First-Principle Calculation of Effect of Cu Content on the Mechanical Properties of High Entropy Alloy AlFeTiCrZnCux

DOI: 10.12677/MP.2022.123009, PP. 86-95

Keywords: 高熵合金,第一性原理,生成热
High Entropy Alloy
, First Principle, Heat of Formation

Full-Text   Cite this paper   Add to My Lib

Abstract:

已有研究表明AlFeTiCrZnCu高熵合金是简单的立方晶体结构,为了进一步研究其中元素含量的影响,本文采用基于平面波赝势,并结合广义梯度近似(GGA)的第一性原理密度泛函理论从头计算的方法,在立方结构晶胞的单个原子上用虚拟晶体近似(VCA)方法建立高熵合金的长程固溶体结构模型,计算了高熵合金AlFeTiCrZnCux在Cu元素含量不同时的密度、晶格常数、弹性模量及生成热。计算结果表明,随着Cu元素含量的提高,高熵合金AlFeTiCrZnCux的晶格常数减小,密度增大;Cu元素的含量并不影响高熵合金AlFeTiCrZnCux的力学稳定性及脆性;高熵合金AlFeTiCrZnCux的基态总能量及生成热都随着Cu元素含量的提高而降低,因此合金体系的稳定性和热力学稳定性有所增强。
Previous studies have shown that AlFeTiCrZnCu high entropy alloys (HEA) are simple cubic crystal structure. In order to study the influence of element content, this paper adopts the method of first-principles density functional theory ab initio calculation based on plane wave pseudopotential with generalized gradient approximation (GGA). The long-range solid solution structure model of the HEA was established on the single atom of the square structure unit cell by the virtual crystal approximation(VCA), and the density, lattice constant, elastic modulus and formation of the high-entropy alloy AlFeTiCrZnCux with different Cu element contents were calculated. The calculated results indicate that the lattice parameter of HEA AlFeTiCrZnCux decreases with the increasing mole fraction of Cu, and the mass density increases. The mechanical stability and brittleness of HEA AlFeTiCrZnCux were regardless of the content of Cu. The total energy and the heat of formation decrease with the increasing mole fraction of Cu, but the system stability and thermodynamic stability increase.

References

[1]  Ranganathan, S. (2003) Alloyed Pleasures: Multimetallic Cocktails. Current Science, 85, 1404-1406.
[2]  Yeh, J.W., Chen, S.K., Lin, S.J., et al. (2004) Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements. Advanced Engineering Materials, 35, 2533-2536.
https://doi.org/10.1007/s11661-006-0234-4
[3]  Huang, P.K., Yeh, J.W., Shun, T.T., et al. (2004) Mul-ti-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating. Advanced Engi-neering Materials, 6, 74-78.
https://doi.org/10.1002/adem.200300507
[4]  Yeh, J.W., Lin, S.J., Chin, T.S., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engi-neering Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567
[5]  Hsu, C.Y., Yeh, J.W., Chen, S.K., et al. (2004) Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrA0.5Fe Alloy with Boron Addition. Metallurgical and Ma-terials Transactions A, 35, 1465-1469.
https://doi.org/10.1007/s11661-004-0254-x
[6]  Mariela, F.G., Guillermo, B. and Hugo, O.M. (2012) Determina-tion of the Transition to the High Entropy Regime for Alloys of Refractory Elements. Journal of Alloys and Compounds, 534, 25-31.
https://doi.org/10.1016/j.jallcom.2012.04.053
[7]  Wang, W.R., Wang, W.L., Wang, S.C., et al. (2012) Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys. Intermetallics, 26, 44-51.
https://doi.org/10.1016/j.intermet.2012.03.005
[8]  Senkov, O.N., Scott, J.M., Sendova, S.V., et al. (2011) Micro-structure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy. Journal of Alloys and Compounds, 509, 6043-6048.
https://doi.org/10.1016/j.jallcom.2011.02.171
[9]  Tong, C.J., Chen, Y.L., Yeh, J.W., et al. (2005) Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Metallurgical and Mate-rials Transactions A, 36, 881-893.
https://doi.org/10.1007/s11661-005-0283-0
[10]  Tong, C.J., Chen, M.R., Yeh, J.W., et al. (2005) Mechanical Per-formance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Metallurgical and Materials Transactions A, 36, 1263-1271.
https://doi.org/10.1007/s11661-005-0218-9
[11]  Wu, J.M., Lin, S.J., Yeh, J.W., et al. (2006) Adhesive Wear Be-havior of AlxCoCrCuFeNi High-Entropy Alloys as a Function of Aluminum Content. Wear, 261, 513-519.
https://doi.org/10.1016/j.wear.2005.12.008
[12]  Tung, C.C., Yeh, J.W., Shun, T.T., et al. (2007) On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System. Materials Letters, 61, 1-5.
https://doi.org/10.1016/j.matlet.2006.03.140
[13]  Varalakshmi, S., Kamaraj, M. and Murty, B.S. (2008) Synthesis and Characterization of Nanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by Mechanical Alloying. Journal of Alloys and Compounds, 460, 253-257.
https://doi.org/10.1016/j.jallcom.2007.05.104
[14]  Varalashmi, S., Rao, G.A., Kamaraj, M., et al. (2010) Hot Con-solidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy after Mechanical Alloying. Journal of Materials Science, 45, 5158-5163.
https://doi.org/10.1007/s10853-010-4246-5
[15]  Li, Z., Pradeep, K.G., Deng, Y., et al. (2016) Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off. Nature, 534, 227-230.
https://doi.org/10.1038/nature17981
[16]  Yang, Z., Shi, D., Wen, B., et al. (2010) First-Principle Studies of Ca-X (X = Si, Ge, Sn, Pb) Intermetallic Compounds. Journal of Solid State Chemistry, 183, 136-143.
https://doi.org/10.1016/j.jssc.2009.11.007
[17]  Shi, D.M., Wen, B., Roderick, M., et al. (2009) First-Principles Studies of Al-Ni Intermetallic Compounds. Journal of Solid State Chemistry, 182, 2664-2669.
https://doi.org/10.1016/j.jssc.2009.07.026
[18]  Wen, B., Zhao, J., Bai, F., et al. (2008) First-Principle Studies of Al-Ru Intermetallic Compounds. Intermetallics, 16, 333-339.
https://doi.org/10.1016/j.intermet.2007.11.003
[19]  Zhu, A., Wang, J., Zhao, D., et al. (2011) Native Defects and Pr Inpurities in Orthorhombic CaTiO3 by First-Principles Calculations. Physica B Condensed Matter, 406, 2697-2702.
https://doi.org/10.1016/j.physb.2011.04.010
[20]  Zhu, A., Wang, J., Du, Y., et al. (2012) Effects of Zn Impurities on the Electronic Properties of Pr Doped CaTiO3. Physica B Condensed Matter, 407, 849-854.
https://doi.org/10.1016/j.physb.2011.12.096
[21]  Huang, G.Q. and Wang, J.X. (2012) Magnetic Behavior of Mn-Doped GaN (11-00) Film from First-Principles Calculation. Journal of Applied Physics, 111, 43907-43907.
https://doi.org/10.1063/1.3685901
[22]  Wang, J.X. and Huang, G.Q. (2010) Atomic and Electronic Structure of Mn-Doped GaN Film from First-Principles Calculations. Physica Status Solidi, 9, 591-592.
https://doi.org/10.1002/pssc.201084191
[23]  Segall, M.D., Lindan, J.D., Probert, J.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[24]  Ramer, N.J. and Rappe, A.M. (2000) Application of a New Virtual Crystal Approach for the Study of Disordered Perovskites. Journal of Physics and Chemistry of Solid, 61, 315-320.
https://doi.org/10.1016/S0022-3697(99)00300-5
[25]  Bellaiche, L. and Vanderbilt, D. (2000) Virtual Crystal Approximation Revisited: Application to Dielectric and Piezoelectric Properties of Perovskites. Physical Review B, 61, 7877-7882.
https://doi.org/10.1103/PhysRevB.61.7877
[26]  Kakegawa, K., Mohri, J., Shirasaki, S., et al. (2010) Sluggish Pansition between Tetragonal and Rhombohedral Phases of Pb(Zr,Ti)O3 Prepared by Application of Electric Field. Journal of the American Ceramic Society, 65, 515-519.
https://doi.org/10.1111/j.1151-2916.1982.tb10344.x
[27]  Winkler, B., Pickard, C. and Milman, V. (2002) Ap-plicability of a Quantum Mechanical Virtual Crystal Approximation to Study Al/Si-Disorder. Chemical Physics Letters, 362, 266-270.
https://doi.org/10.1016/S0009-2614(02)01029-1
[28]  Payne, M.C., Teter, M.P., Allan, D.C., et al. (1992) Iterative Minimization Techniques for ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics, 64, 1045-1097.
https://doi.org/10.1103/RevModPhys.64.1045
[29]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[30]  Hamann, D.R., Schluter, M. and Chiang, C. (1979) Norm-Conserving Pseudopotentials. Physical Review Letters, 43, 1494-1497.
https://doi.org/10.1103/PhysRevLett.43.1494
[31]  Leung, T.C., Chan, C.T. and Harmon, B.N. (1991) Ground-State Properties of Fe, Co, Ni, and Their Monoxides: Results of the Generalized Gradient Approximation. Phys-ical Reviews B, 44, 2923-2927.
https://doi.org/10.1103/PhysRevB.44.2923
[32]  Nye, J.F. (1985) Physical Properties of Crystals: Their Represen-tation by Tensors and Matrices. Oxford University Press, Oxford.
[33]  Anderson, O.L. (1963) A Simplified Method for Calculating the Debye Temperature from Elastic Constants. Journal of Physics and Chemistry Solids, 24, 909-917.
https://doi.org/10.1016/0022-3697(63)90067-2
[34]  Lyapin, A.G. and Brazhkin, V.V. (2002) Correlations between the Physical Properties of the Carbon Phases Obtained at a High Pressure from C60 Fullerite. Physics of the Solid State, 44, 405-409.
https://doi.org/10.1134/1.1462656
[35]  Pugh, S.F. (2009) XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. Philosophical Magazine Series 7, 45, 823-843.
https://doi.org/10.1080/14786440808520496

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413