|
Biophysics 2022
基于自然语言处理的单细胞转录组数据伪时间分析
|
Abstract:
[1] | Tang, F., Barbacioruet, C., Wang, Y., et al. (2009) mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat Methods, 6, 377-382. https://doi.org/10.1038/nmeth.1315 |
[2] | Owens, B. (2012) Genomics: The Single Life. Na-ture, 491, 27-29. https://doi.org/10.1038/491027a |
[3] | Potter, S.S. (2018) Single-Cell RNA Sequencing for the Study of Development, Physiology and Disease. Nature Reviews Nephrology, 14, 479-492. https://doi.org/10.1038/s41581-018-0021-7 |
[4] | Baslan, T. and Hicks, J. (2017) Unravelling Biology and Shifting Paradigms in Cancer with Single-Cell Sequencing. Nature Reviews Cancer, 17, 557-569. https://doi.org/10.1038/nrc.2017.58 |
[5] | Kester, L. and van Oudenaarden, A. (2018) Single-Cell Transcriptomics Meets Lineage Tracing. Cell Stem Cell, 23, 166-179. https://doi.org/10.1016/j.stem.2018.04.014 |
[6] | Papalexi, E. and Satija, R. (2018) Single-Cell RNA Sequencing to Explore Immune Cell Heterogeneity. Nature Reviews Immunology, 18, 35-45. https://doi.org/10.1038/nri.2017.76 |
[7] | Carter, B. and Zhao, K. (2021) The Epigenetic Basis of Cellular Heterogeneity. Nature Reviews Genetics, 22, 235-250.
https://doi.org/10.1038/s41576-020-00300-0 |
[8] | Woyke, T., D.F.R. Doud, and F. Schulz (2017) The Trajectory of Microbial Single-Cell Sequencing. Nature Methods, 14, 1045-1054. https://doi.org/10.1038/nmeth.4469 |
[9] | Sade-Feldman, M., Yizhak, K., Nordman, E., et al. (2018) Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell, 175, 998-1013.e20. https://doi.org/10.1016/j.cell.2018.10.038 |
[10] | Mathys, H., Davila-Velderrain, J., Peng, Z., et al. (2019) Single-Cell Transcriptomic Analysis of Alzheimer’s Disease. Nature, 570, 332-337. https://doi.org/10.1038/s41586-019-1195-2 |
[11] | Su, Y., Chen, D., Yuan, D., et al. (2020) Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell, 183, 1479-1495.e20. https://doi.org/10.1016/j.cell.2020.10.037 |
[12] | Maier, B., Leader, A.M., Chen, S.T., et al. (2020) A Conserved Dendritic-Cell Regulatory Program Limits Antitumour Immunity. Nature, 580, 257-262. https://doi.org/10.1038/s41586-020-2134-y |
[13] | Bocchi, V.D., Conforti, P., Vezzoli, E., et al. (2021) The Coding and Long Noncoding Single-Cell Atlas of the Developing Human Fetal Striatum. Science, 372, Article No. abf5759. https://doi.org/10.1126/science.abf5759 |
[14] | Bhaduri, A., Sandoval-Espinosa, C., Otero-Garcia, M., et al. (2021) An Atlas of Cortical Arealization Identifies Dynamic Molecular Signatures. Nature, 598, 200-204. https://doi.org/10.1038/s41586-021-03910-8 |
[15] | Hu, H., Liu, R., Zhao, C., et al. (2022) CITEMO(XMBD): A Flexible Single-Cell Multimodal Omics Analysis Framework to Reveal the Heterogeneity of Immune cells. RNA Biology, 19, 290-304.
https://doi.org/10.1080/15476286.2022.2027151 |
[16] | Saelens, W., Cannoodt, R., Todorov, H. and Saeys, Y. (2019) A Comparison of Single-Cell Trajectory Inference Methods. Nature Biotechnology, 37, 547-554. https://doi.org/10.1038/s41587-019-0071-9 |
[17] | Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F. and Theis, F.J. (2016) Diffusion Pseudotime Robustly Reconstructs Lineage Branching. Nature Methods, 13, 845-848. https://doi.org/10.1038/nmeth.3971 |
[18] | Setty, M., Tadmor, M.D., Reich-Zeliger, S., et al. (2016) Wishbone Iden-tifies Bifurcating Developmental Trajectories from Single-Cell Data. Nature Biotechnology, 34, 637-645. https://doi.org/10.1038/nbt.3569 |
[19] | Qiu, X., Mao, Q., Tang, Y., et al. (2017) Reversed Graph Embedding Re-solves Complex Single-Cell Trajectories. Nature Methods, 14, 979-982. https://doi.org/10.1038/nmeth.4402 |
[20] | Setty, M., Kiseliovas, V., Levine, J., Gayoso, A., Mazutis, L. and Pe’er, D. (2019) Characterization of Cell Fate Probabilities in Single-Cell Data with Palantir. Nature Biotechnology, 37, 451-460.
https://doi.org/10.1038/s41587-019-0068-4 |
[21] | Cong, Y., Chan, Y.B. and Ragan, M.A. (2016) Exploring Lateral Genetic Transfer among Microbial Genomes Using TF-IDF. Scientific Reports, 6, Article No. 29319. https://doi.org/10.1038/srep29319 |
[22] | Moussa, M. and Mandoiu, I.I. (2018) Single Cell RNA-seq Data Clustering Using TF-IDF Based Methods. BMC Genomics, 19, Article No. 569. https://doi.org/10.1186/s12864-018-4922-4 |
[23] | Wu, F., Zhang, C. and Zhang, L. (2021) A Deep Learning Framework Combined with Word Embedding to Identify DNA Replication Origins. Scientific Reports, 11, Article No. 844. https://doi.org/10.1038/s41598-020-80670-x |
[24] | Stassen, S.V., Yip, G.G.K., Wong, K.K.Y., Ho, J.W.K. and Tsia, K.K. (2021) Generalized and Scalable Trajectory Inference in Single-Cell Omics Data with VIA. Nature Commu-nications, 12, Article No. 5528.
https://doi.org/10.1038/s41467-021-25773-3 |
[25] | Moon, K.R., van Dijk, D., Wang, Z., et al. (2019) Visualizing Structure and Transitions in High-Dimensional Biological Data. Nature Biotechnology, 37, 1482-1492. https://doi.org/10.1038/s41587-019-0336-3 |