全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AB型嵌段共聚物在薄膜受限下形成穿孔层结构的理论研究
Theoretical Study on the Formation Perforated Lamella Phase of AB-Type Block Copolymer under Confined in Thin Film

DOI: 10.12677/MP.2022.123007, PP. 69-78

Keywords: 嵌段共聚物,自组装,自洽场理论,受限,穿孔层结构
Block Copolymer
, Self-Assembly, Self-Consistent Field Theory, Confinement, Perforated Lamella

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用自洽场理论方法研究了平行板受限下AB型嵌段共聚物的分子链拓扑结构对自组装行为的影响。首先设计了AmB多臂星型嵌段共聚物,研究臂数m对穿孔结构(PL)稳定性的影响,通过构建m = 1,2和4关于A组分的体积分数(fA)和受限尺寸(D)的相图,发现臂数m的增加有利于拓宽PL结构在fA上的稳定区间;但当m > 2时,区间增加的不是很明显。然后固定m = 2,通过改变其中一个A嵌段在B嵌段上的连接位置,用参数τ来调控,即设计ABAT型嵌段共聚物,来研究τ对PL结构稳定性的影响。通过构建0 < τ ≤ 1时关于fA~D的相图,得出有利于PL结构稳定的τ值,并通过分析不同τ时PL结构的自由能贡献、链段分布和结构特征尺寸等的变化规律,得出A嵌段的自由度受其在B嵌段上的连接点位置的影响,其在相畴中的空间分布直接影响到PL结构的稳定性。该研究为相关实验上制备穿孔结构提供理论指导。
The effect of chain topology on the self-assembly behavior of AB-type block copolymers confined in thin film was studied using the self-consistent field theory method (SCFT). Firstly, the AmB miktoarm star copolymer was designed and the effect of the number of arms m on the stability of per-forated lamella (PL) structure was investigated by constructing the phase diagrams for m = 1, 2 and 4 with the volume fraction (fA) and size of confinement (D). The increasing m is beneficial to expanding the stable phase region of the PL structure, while it increases not very obviously when m > 2. Then fix m = 2 and the ABAT-type block copolymer was designed by regulating the tethering point of one A block on the B block, which is characterized by the parameter τ. The favorable τ for the stability of the PL phase is examined by constructed the phase diagram of fA~D, where the free energy contributions, segment distribution and feature size of the PL structure under different τ are analyzed. It indicates that the degree of freedom of the A block is affected by the tethering point on the B block, and its spatial distribution in the domain affects the stability of the PL structure. This study provides theoretical guidance for the preparation of perforated structures in related experiments.

References

[1]  Takagi, W., Suzuki, J., Aoyama, Y., et al. (2019) Bicontinuous Double-Diamond Structures Formed in Ternary Blends of AB Diblock Copolymers with Block Chains of Different Lengths. Macromolecules, 52, 6633-6640.
https://doi.org/10.1021/acs.macromol.9b00724
[2]  Lequieu, J., Quah, T., Delaney, K.T., et al. (2020) Complete Photonic Band Gaps with Nonfrustrated ABC Bottlebrush Block Polymers. ACS Macro Letters, 9, 1074-1080.
https://doi.org/10.1021/acsmacrolett.0c00380
[3]  Howard, M.P., Lequieu, J., Delaney, K.T., et al. (2020) Con-necting Solute Diffusion to Morphology in Triblock Copolymer Membranes. Macromolecules, 53, 2336-2343.
https://doi.org/10.1021/acs.macromol.0c00104
[4]  Lee, A., Elam, J.W. and Darling, S.B. (2016) Membrane Mate-rials for Water Purification: Design, Development, and Application. Environmental Science-Water Research & Technol-ogy, 2, 17-42.
https://doi.org/10.1039/C5EW00159E
[5]  Cha, S.K., Lee, G.Y., Mun, J.H., et al. (2017) Self-Assembly of Complex Multi-Metal Nanostructures from Perforated Lamellar Block Copolymer Thin Films. ACS Applied Materials & Interfaces, 9, 15727-15732.
https://doi.org/10.1021/acsami.7b03319
[6]  Jiang, W.B., Qiang, Y.C., Li, W.H., et al. (2018) Effects of Chain Topology on the Self-Assembly of AB-Type Block Copolymers. Macromolecules, 51, 1529-1538.
https://doi.org/10.1021/acs.macromol.7b02389
[7]  Bates, M.W., Barbon, S.M., Levi, A.E., et al. (2020) Synthesis and Self-Assembly of ABn Miktoarm Star Polymers. ACS Macro Letters, 9, 396-403.
https://doi.org/10.1021/acsmacrolett.0c00061
[8]  Dong, Q.S. and Li, W.H. (2021) Effect of Molecular Asym-metry on the Formation of Asymmetric Nanostructures in ABC-Type Block Copolymers. Macromolecules, 54, 203-213.
https://doi.org/10.1021/acs.macromol.0c02442
[9]  Matsen, M.W. (2012) Effect of Architecture on the Phase Be-havior of AB-Type Block Copolymer Melts. Macromolecules, 45, 2161-2165.
https://doi.org/10.1021/ma202782s
[10]  张连斌, 王珂, 朱锦涛. 中国嵌段共聚物受限自组装的研究进展[J]. 高分子学报, 2017, 1(8): 1261-1276.
[11]  Shi, A.C. and Li, B.H. (2013) Self-Assembly of Diblock Copolymers under Confinement. Soft Matter, 9, 1398-1413.
https://doi.org/10.1039/C2SM27031E
[12]  郭坤琨, 吴凯, 韩文驰. 两嵌段共聚物在扁长形受限空间的相行为研究[J]. 湖南大学学报(自然科学版), 2020, 47(6): 109-115.
[13]  Li, W.H., Liu, M.J., Qiu, F., et al. (2013) Phase Diagram of Diblock Copolymers Confined in Thin Films. Journal of Physical Chemistry B, 117, 5280-5288.
https://doi.org/10.1021/jp309546q
[14]  容婧婧, 朱有亮, 孙昭艳. 表面图案诱导两嵌段共聚物形成穿孔层状结构的模拟[J]. 高等学校化学学报, 2018, 39(12): 2805-2810.
[15]  Liu, M.J., Li, W.H., Qiu, F., et al. (2012) Theo-retical Study of Phase Behavior of Frustrated ABC Linear Triblock Copolymers. Macromolecules, 45, 9522-9530.
https://doi.org/10.1021/ma302060m
[16]  Matsen, M.W. (2007) Polydispersity-Induced MacrophaseSeparation in Diblock Copolymer Melts. Physical Review Letters, 99, Article ID: 148304.
https://doi.org/10.1103/PhysRevLett.99.148304

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133