全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Probability Distributions in Astrophysics: VIII. The Truncated Weibull—Pareto Distribution

DOI: 10.4236/ijaa.2022.122011, PP. 177-193

Keywords: Stars: Normal, Galaxy Groups, Clusters, Superclusters, Large Scale Structure of the Universe, Cosmology

Full-Text   Cite this paper   Add to My Lib

Abstract:

We derive the truncated version of the Weibull—Pareto distribution, deriving the probability density function, the distribution function, the average value, the rth moment about the origin, the media, the random generation of values and the maximum likelihood estimator which allows deriving the three parameters. The astrophysical applications of the Weibull—Pareto distribution are the initial mass function for stars, the luminosity function for the galaxies of the Sloan Digital Sky Survey, the luminosity function for QSO and the photometric maximum of galaxies of the 2 MASS Redshift Survey.

References

[1]  Weibull, W. (1939) A Statistical Theory of Strengths of Materials. Vetenskaps Akademiens Handligar No. 151.
[2]  Weibull, W. (1951) A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18, 293-297.
https://doi.org/10.1115/1.4010337
[3]  Rinne, H. (2008) The Weibull Distribution: A Handbook. Chapman and Hall/CRC, London.
https://doi.org/10.1201/9781420087444
[4]  Nasiru, S. and Luguterah, A. (2015) The New Weibull-Pareto Distribution. Pakistan Journal of Statistics and Operation Research, 11, 103-114.
https://doi.org/10.18187/pjsor.v11i1.863
[5]  Tahir, M.H., Cordeiro, G.M., Alzaatreh, A., Mansoor, M. and Zubair, M. (2016) A New Weibull-Pareto Distribution: Properties and Applications. Communications in Statistics-Simulation and Computation, 45, 3548-3567.
https://doi.org/10.1080/03610918.2014.948190
[6]  Almetwally, E.M., Almongy, H.M., et al. (2019) Estimation Methods for the New Weibull-Pareto Distribution: Simulation and Application. Journal of Data Science, 17, 610-630.
[7]  Jeyadurga, P. and Balamurali, S. (2021) Multiple Deferred State Sampling Plan for Exponentiated New Weibull Pareto Distributed Mean Life Assurance. Journal of Testing and Evaluation, 49, Article ID: 20200510.
https://doi.org/10.1520/JTE20200510
[8]  Mutair, A. and Karam, N.S. (2021) Stress-Strength Reliability for P(T < X < Z) Using the New Weibull-Pareto Distribution. Al-Qadisiyah Journal of Pure Science, 26, 39-51.
https://doi.org/10.29350/qjps.2021.26.2.1259
[9]  Shrahili, M., Al-Omari, A.I. and Alotaibi, N. (2021) Acceptance Sampling Plans from Life Tests Based on Percentiles of New Weibull-Pareto Distribution with Application to Breaking Stress of Carbon Fibers Data. Processes, 9, Article No. 2041.
https://doi.org/10.3390/pr9112041
[10]  Afify, A.Z., Yousof, H.M., Butt, N.S. and Hamedani, G.G. (2016) The Transmuted Weibull-Pareto Distribution. Pakistan Journal of Statistics, 32, 183-206.
[11]  Tahir, A., Akhter, A.S., et al. (2018) Transmuted New Weibull-Pareto Distribution and Its Applications. Applications and Applied Mathematics: An International Journal (AAM), 13, 30-46.
[12]  Al-Omari, A., Al-khazaleh, A. and Alzoubi, L. (2020) A Generalization of the New-Weibull Pareto Distribution. Revista Investigación Operacional, 41, 138-146.
[13]  Damian, B., Jose, J., Samal, M.R., Moraux, E., Das, S.R. and Patra, S. (2021) Testing the Role of Environmental Effects on the Initial Mass Function of Low-Mass Stars. Monthly Notices of the Royal Astronomical Society, 504, 2557-2576.
https://doi.org/10.1093/mnras/stab194
[14]  Schechter, P. (1976) An Analytic Expression for the Luminosity Function for Galaxies. ApJ, 203, 297-306.
https://doi.org/10.1086/154079
[15]  Madgwick, D.S., Lahav, O., Baldry, I.K., Baugh, C.M., Bland-Hawthorn, J. and Bridges, T. (2002) The 2dF Galaxy Redshift Survey: Galaxy Luminosity Functions per Spectral Type. MNRAS, 333, 133-144.
https://doi.org/10.1046/j.1365-8711.2002.05393.x
[16]  Blanton, M.R., Hogg, D.W., Bahcall, N.A., Brinkmann, J. and Britton, M. (2003) The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1. ApJ, 592, 819-838.
https://doi.org/10.1086/375776
[17]  Driver, S.P., Liske, J., Cross, N.J.G., De Propris, R. and Allen, P.D. (2005) The Millennium Galaxy Catalogue: The Space Density and Surface-Brightness Distribution(s) of Galaxies. MNRAS, 360, 81-103.
https://doi.org/10.1111/j.1365-2966.2005.08990.x
[18]  Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011) Statistical Distributions. Fourth Edition, John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9780470627242
[19]  Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[20]  Chabrier, G. (2003) Galactic Stellar and Substellar Initial Mass Function. PASP, 115, 763-795.
https://doi.org/10.1086/376392
[21]  Zaninetti, L. (2014) A Near Infrared Test for Two Recent Luminosity Functions for Galaxies. Revista Mexicana de Astronomia y Astrofisica, 50, 7-14.
[22]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[23]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
https://doi.org/10.1109/TAC.1974.1100705
[24]  Liddle, A.R. (2004) How Many Cosmological Parameters? MNRAS, 351, L49-L53.
https://doi.org/10.1111/j.1365-2966.2004.08033.x
[25]  Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. In: Turatto, M., Benetti, S., Zampieri, L. and Shea, W., Eds., 1604-2004: Supernovae as Cosmological Lighthouses, Vol. 342 of Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific, San Francisco, 508-516.
[26]  Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463.
https://doi.org/10.1214/aoms/1177731684
[27]  Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281.
https://doi.org/10.1214/aoms/1177730256
[28]  Massey Frank, J.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78.
https://doi.org/10.1080/01621459.1951.10500769
[29]  Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M. and Moraux, E. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362—Testing the Disc Regulation Paradigm at 5 Myr. MNRAS, 384, 675-686.
https://doi.org/10.1111/j.1365-2966.2007.12725.x
[30]  Oliveira, J.M., Jeffries, R.D. and van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. MNRAS, 392, 1034-1050.
https://doi.org/10.1111/j.1365-2966.2008.14140.x
[31]  Prisinzano, L., Damiani, F., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of the γ Velorum Cluster. A&A, 589, Article No. A70.
https://doi.org/10.1051/0004-6361/201527875
[32]  Panwar, N., Pandey, A.K., Samal, M.R., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, Article No. 44.
https://doi.org/10.3847/1538-3881/aa9f1b
[33]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics, 11, 133-149.
https://doi.org/10.4236/ijaa.2021.111008
[34]  Zaninetti, L. (2017) A Left and Right Truncated Schechter Luminosity Function for Quasars. Galaxies, 5, Article No. 25.
https://doi.org/10.3390/galaxies5020025
[35]  Zaninetti, L. (2019) The Truncated Lindley Distribution with Applications in Astrophysics. Galaxies, 7, 61-78.
https://doi.org/10.3390/galaxies7020061

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413