全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Regularization Method for Solving Ill-Posed Problems with Unbounded Operators

DOI: 10.4236/ojop.2022.112002, PP. 7-14

Keywords: Ill-Posed Problem, Regularization Method, Unbounded Linear Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let \"\"\"\" be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation

References

[1]  Tikhonov, A.N. and Arsenin, V.Ya. (1978) Solution of Ill-Posed Problems. John Wiley & Sons, Hoboken.
[2]  Groetsch, C.W. (2006) Stable Approximate Evualuation of Unbounded Operators. Springer, Berlin.
https://doi.org/10.1007/3-540-39942-9
[3]  Bakushinsky, A. and Goncharsky, A. (1994) Ill-Posed Problems: Theory and Applications. Springer, Berlin.
https://doi.org/10.1007/978-94-011-1026-6
[4]  Engl, H.W., Hanke, M. and Neubauer, A. (2000) Regularization of Inverse Problems. Kluwer, Alphen aan den.
[5]  Morozov, V.A. (1984) Methods for Solving Incorrectly Posed Problems. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-5280-1
[6]  Ramm, A.G. (2005) Inverse Problems. Springer-Verlag, New York.
[7]  Ramm, A.G. (2007) Ill-Posed Problems with Unbounded Operators. Journal of Mathematical Analysis and Applications, 325, 490-495.
https://doi.org/10.1016/j.jmaa.2006.02.004
[8]  Van Kinh, N., Chuong, N.M. and Gorenflo, R. (1996) Regularization Method for Nonlinear Variational Inequalities. Proceedings of the First National Workshop “Optimization and Control”, Quinhon, May 27 - June 1, 1996, 53-64. (Preprint: Nr. A-89-28, Freie Universitat, Berlin).
[9]  Van Kinh, N. (2007) Lavrentiev Regularization Method for Nonlinear Ill-Posed Problems. Quy Nhon Uni. Journal of Science, No. 1, 13-28.
[10]  Van Kinh, N. (2014) On the Stable Method of Computing Values of Unbounded Operators. Journal Science of Ho Chi MInh City University of Food Industry, No. 2, 21-30.
[11]  Van Kinh, N. (2020) On the Stable Method Computing Values of Unbounded Operators. Open Journal of Optimization, 9, 129-137.
https://doi.org/10.4236/ojop.2020.94009
[12]  Zwart, K. (2018) The Spectral Theorem for Unbounded Self-Adjoint Operators and Nelson’s Theorem. Bachelor Thesis, Universiteit Utrecht, Utrecht.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133