全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于滤波方法和矩阵低秩稀疏分解的遥感图像去噪算法
Remote Sensing Image Denoising Algorithm Based on Filtering Method and Matrix Low-Rank Sparse Decomposition

DOI: 10.12677/OE.2022.122006, PP. 55-62

Keywords: 遥感图像去噪,低秩分解,非精确增广拉格朗日法,中值滤波,导向滤波
Remote Sensing Image Denoising
, Matrix Low-Rank Sparse Decomposition, Inexact Augmented Lagrangian Method, Median Filter, Guided Filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对遥感图像在形成、传输和处理过程中产生的椒盐噪声问题,设计了一种结合中值滤波、矩阵低秩分解与导向滤波的遥感图像去噪算法。给定含噪图像,该算法首先对图像进行有互相重叠像素的分块处理,利用非精确增广拉格朗日乘子法求解分块后图像所对应的矩阵低秩分解模型,得到稀疏图像和噪声图像,然后利用中值滤波算法对给定的含噪图像进行处理,对处理后的图像与稀疏图像相加求和,将结果作为引导图像,含噪图像作为输入图像,利用导向滤波算法得到保留遥感图像细节信息的复原图像。通过与其它方法对比,证明了本文方法的有效性。
In view of the salt and pepper noise generated during the formation, transmission and processing of remote sensing images, a remote sensing image denoising algorithm combining median filtering, matrix low-rank decomposition and guided filtering is designed. Given a noisy image, the algorithm first divides the image into overlapped patches, and uses the inexact augmented Lagrange multiplier method to solve the matrix low-rank decomposition model of the block image to obtain the sparse image and the noise image. Then the algorithm uses the median filter to process the given noisy image, the sum of the denoised image and the sparse image is used as the guide image, the noisy image is used as input image, and the restored image that retains the details of the remote sensing image is obtained by using the guide filter. Compared with several existing methods, the effectiveness of the proposed method is effectively proved.

References

[1]  付正广. 计算机图像处理与识别技术的应用研究[J]. 黑龙江科学, 2021, 12(24): 110-112.
[2]  吴妮真. 计算机视觉技术研究及发展趋势分析[J]. 科技创新与应用, 2021, 11(34): 58-61.
[3]  韩佳雪, 汪西原, 张文坤. 一种改进的彩色遥感图像边缘检测算法研究[J]. 计算机仿真, 2021, 38(2): 383-388.
[4]  张颖, 马承泽, 杨平, 王新民. 基于小波变换和改进PCA的人脸特征提取算法[J]. 吉林大学学报(理学版), 2021, 59(6): 1499-1503.
[5]  樊敏, 宋世军. 基于多源大数据分析的图像特征智能识别模型[J/OL]. 吉林大学学报(工学版), 2022: 1-8.
http://dx.doi.org/10.13229/j.cnki.jdxbgxb20211312, 2022-01-20.
[6]  秦振涛, 杨茹, 张靖, 杨武年. 基于聚类结构自适应稀疏表示的高光谱遥感图像修复研究[J]. 遥感技术与应用, 2018, 33(2): 212-215+341.
[7]  齐德明. 基于改进型的非局部均值滤波算法在医学图像处理中的研究与应用[J]. 计算机应用与软件, 2021, 38(9): 256-261+279.
[8]  Zhang, X.B. (2021) Center Pixel Weight Based on Wiener Filter for Non-Local Means Image Denoising. Optik, 244, Article ID: 167557.
https://doi.org/10.1016/j.ijleo.2021.167557
[9]  Kaur, G., Garg, M., Gupta, S. and Gupta, R. (2021) Denoising of Images Using Thresholding Based on Wavelet Transform Technique. IOP Conference Series: Materials Science and Engineering, 1022, Article ID: 012031.
https://doi.org/10.1088/1757-899X/1022/1/012031
[10]  Tripathi, S. and Sharma, N. (2021) Denoising of Magnetic Resonance Images Using Discriminative Learning-Based Deep Convolutional Neural Network. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine, 30, 145-160.
https://doi.org/10.3233/THC-212882
[11]  Lin, Z.C., Chen, M.M. and Ma, Y. (2010) The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. arXiv:1009.5055.
[12]  马炼, 李林. 一种针对椒盐噪声的高速自适应中值滤波算法[J]. 计算机时代, 2021(10): 68-71.
[13]  张雯雯, 韩裕生. 基于非局部自相似性的低秩稀疏图像去噪[J]. 计算机应用, 2018, 38(9): 2696-2700+2746.
[14]  Zhou, T., Li, C., Zeng, X. and Zhao, Y.H. (2021) Sparse Representation with Enhanced Nonlocal Self-Similarity for Image Denoising. Machine Vision and Applications, 32, Article No. 110.
https://doi.org/10.1007/s00138-021-01232-3
[15]  Zeng, H.J., Xie, X.Z., Kong, W.F., Cui, S. and Ning, J.F. (2020) Hyperspectral Image Denoising via Combined Non-Local Self-Similarity and Local Low-Rank Regularization. IEEE Access, 8, 50190-50208.
https://doi.org/10.1109/ACCESS.2020.2979809
[16]  Maji, S.K., Thakur, R.K. and Yahia, H.M. (2020) SAR Image Denoising Based on Multifractal Feature Analysis and TV Regularisation. IET Image Processing, 14, 4158-4167.
https://doi.org/10.1049/iet-ipr.2020.0272
[17]  Sharma, V.K. and Nair, S. (2016) Development of Optimal Denoising Technique using TV Regularization and Masking Filter. International Journal of Computer Applications, 151, 1-5.
https://doi.org/10.5120/ijca2016911092
[18]  Wen, Z.D., Hou, Z.D. and Jiao, L.C. (2017) Discriminative Dictionary Learning with Two-Level Low Rank and Group Sparse Decomposition for Image Classification. IEEE Transactions on Cybernetics, 47, 3758-3771.
https://doi.org/10.1109/TCYB.2016.2581861
[19]  Wang, S., Zhu, Z.B., Zhao, R.W. and Zhang, B.X. (2021) Hyper-spectral Image Denoising via Nonconvex Logarithmic Penalty. Mathematical Problems in Engineering, 2021, Article ID: 5535169.
https://doi.org/10.1155/2021/5535169
[20]  Liu, Y.F., Liu, X. and Ma, S.Q. (2019) On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming. Mathematics of Operations Research, 44, 632-650.
https://doi.org/10.1287/moor.2018.0939

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133