全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中红外半导体激光器腔面膜的研究现状
Research Status of Cavity Masks for Mid-Infrared Semiconductor Lasers

DOI: 10.12677/OE.2022.122008, PP. 71-77

Keywords: 高反膜,增透膜,薄膜制备技术,半导体激光器
High Reflective Film
, Antireflective Film, Thin Film Preparation Technology, Semiconductor Laser

Full-Text   Cite this paper   Add to My Lib

Abstract:

3~5 μm波段是重要的大气窗口,该波段内的4.6 μm半导体激光器广泛应用于痕量气体检测、自由空间光通信和定向红外对抗等领域。随着4.6 μm半导体激光器应用领域的不断拓展,对器件的性能要求越来越高。腔面镀膜是半导体激光器的一个重要但是相对薄弱的器件工艺。随着半导体激光器输出光功率的提升,以及波长向中远红外推进,具有抗激光损伤和高稳定性的光学薄膜成为制约半导体激光器进一步发展的主要因素之一。薄膜的激光损伤阈值、环境稳定性、宽带隙、应力影响、吸收损耗、散射损耗、机械强度等因素都会影响薄膜在激光器中的性能。本文主要总结了4.6 μm波段附近半导体激光器腔面薄膜的报道。
3~5 μm band is an important atmospheric window. 4.6 μm semiconductor lasers in this band are widely used in the fields of trace gas detection, free space optical communication and directional infrared countermeasure. With the continuous expansion of the application field of 4.6 μm semi-conductor laser, the demand for the performance of the device is higher and higher. Cavity surface coating is an important but relatively weak device process of semiconductor laser. With the further increase of the output optical power of the semiconductor laser and the promotion of the wavelength to the middle and far infrared, the optical thin film with anti-laser damage and high stability has become one of the factors limiting the further development of the semiconductor laser. The laser damage threshold, environmental stability, wide band gap, stress effect, absorption loss, scattering loss, mechanical strength and other factors will affect the performance of the thin film in the laser. This paper mainly summarizes the reports of thin films on the cavity surface of semiconductor lasers near 4.6 μm wave band.

References

[1]  宋淑芳, 邢伟荣, 刘铭. 量子级联激光器的原理及研究进展[J]. 激光与红外, 2013, 43(9): 972-976.
[2]  Kazarinov, R.F. and Suris, R.A. (1971) Possibility of the Amplification of Electromagnetic Waves in a Semiconductor with a Super-Lattice. Soviet Physics. Semiconductors, 5, 707-709.
[3]  Capasso, F. (1987) Band Gap Engineering; from Physics and Materials to New Semiconductor Devices. Science, 235, 172-176.
https://doi.org/10.1126/science.235.4785.172
[4]  Liu, H.C. (1988) A Novel Superlattice Infrared Source. Journal of Applied Physics, 63, 2856-2858.
https://doi.org/10.1063/1.340939
[5]  Faist, J., Capasso, F., Sivco, D.L., et al. (1994) Quantum Cascade Laser. Science, 264, 553-556.
https://doi.org/10.1126/science.264.5158.553
[6]  Tomm, J.W., Ziegler, M., Hempel, M., et al. (2011) Mechanisms and Fast Kinetics of the Catastrophic Optical Damage (COD) in GaAs-Based Diode Lasers. Laser & Photonics Reviews, 5, 422-441.
https://doi.org/10.1002/lpor.201000023
[7]  李再金. 半导体激光器腔面光学膜关键技术研究[D]: [博士学位论文]. 北京: 中国科学院研究生院(长春光学精密机械与物理研究所), 2010.
[8]  我国激光技术与应用2035发展战略研究[J]. 中国工程科学, 2020, 22(3): 1-6.
[9]  王超臣, 刘瑞科, 王廷予, 李森森, 周冠军, 白振旭, 王雨雷, 吕志伟. 红外半导体激光器应用[J]. 激光杂志, 2020, 41(8): 1-10.
[10]  牛江丽. 掺氢非晶硅对高功率半导体激光器腔面钝化的研究[D]: [硕士学位论文]. 长春: 长春理工大学, 2009.
[11]  刘峰奇, 张锦川, 刘俊岐, 卓宁, 王利军, 刘舒曼, 翟慎强, 梁平, 胡颖, 王占国. 量子级联激光器研究进展[J]. 中国激光, 2020, 47(7): 79-91.
[12]  Yu, J.S., Slivken, S., Evans, A., et al. (2003) High-Power Continuous-Wave Operation of a 6 μm Quantum-Cascade Laser at Room Temperature. Applied Physics Letters, 83, 2503-2505.
https://doi.org/10.1063/1.1613354
[13]  Forget, S., Faugeras, C. and Bengloan, J.Y. (2005) High-Power Spatial Single Mode Quantum Cascade Lasers at 8.9 μm. Electronics Letters, 41, 418-419.
https://doi.org/10.1049/el:20058046
[14]  Yu, J.S., Slivken, S., Evans, A.J., et al. (2008) High-Performance Conti-nuous-Wave Operation of Quantum-Cascade Lasers above Room Temperature. IEEE Journal of Quantum Electronics, 44, 747-754.
https://doi.org/10.1109/JQE.2008.924434
[15]  Lu, Q.Y., Bai, Y., Bandyopadhyay, N., Slivken, S. and Razeghi, M. (2010) Room-Temperature Continuous Wave Operation of Distributed Feedback Quantum Cascade Lasers with Watt-Level Power Output. Applied Physics Letters, 97, Article ID: 101105.
https://doi.org/10.1063/1.3525859
[16]  Razeghi, M., Lu, Q., Slivken, S., et al. (2020) High Power Continuous Wave Operation of Single Mode Quantum Cascade Lasers up to 5 W Spanning λ~3.8-8.3 μm. Optics Express, 28, 15181-15188.
https://doi.org/10.1364/OE.393069
[17]  Liu, F.-Q., Li, L., Wang, L.J., et al. (2009) Solid Source Mbe Growth of Quantum Cascade Lasers. Applied Physics A—Materials Science & Processing, 97, 527-532.
https://doi.org/10.1007/s00339-009-5423-8
[18]  Zhang, J.C., Liu, F.Q., Tan, S., et al. (2012) High-Performance Uncooled Distributed-Feedback Quantum Cascade Laser without Lateral Regrowth. Applied Physics Letters, 100, Article ID: 112105.
https://doi.org/10.1063/1.3693425
[19]  Zhao, Y., Zhang, J.C., Zhuo, N., et al. (2017) Broad Area Quantum Cascade Lasers Operating in Pulsed Mode above 100 °C at λ ~ 4.7 μm. Journal of Semiconductors, 38, Article ID: 074005.
https://doi.org/10.1088/1674-4926/38/7/074005
[20]  Zhang, J.C., Liu, F.Q., Yao, D.Y., et al. (2013) High Power Buried Sampled Grating Distributed Feedback Quantum Cascade Lasers. Journal of Applied Physics, 113, Article ID: 153101.
https://doi.org/10.1063/1.4801906
[21]  Jia, Z.W., et al. (2017) Improvement of Buried Grating DFB Quantum Cascade Lasers by Small-Angle Tapered Structure. IEEE Photonics Technology Letters, 29, 783-785.
[22]  Maulini, R., Lyakh, A., Tsekoun, A., et al. (2009) High Power Thermoelectrically Cooled and Uncooled Quantum Cascade Lasers with Optimized Reflectivity Facet Coatings. Applied Physics Letters, 95, Article ID: 101105.
https://doi.org/10.1063/1.3246799
[23]  Zhou, W.J., et al. (2017) High Performance Monolithic, Broadly Tunable Mid-Infrared Quantum Cascade Lasers. Optica, 4, 1228-1231.
https://doi.org/10.1364/OPTICA.4.001228
[24]  Lyakh, A., Maulini, R., Tsekoun, A., et al. (2012) Tapered 4.7 μm Quantum Cascade Lasers with Highly Strained Active Region Composition Delivering over 4.5 Watts of Continuous Wave Optical Power. Optics Express, 20, 4382-4388.
https://doi.org/10.1364/OE.20.004382
[25]  朱天雄. AlGaInAs/InP应变补偿量子阱激光器的研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2018.
[26]  王松林, 杨崇民, 张建付, 刘青龙, 黎明, 米高园, 王慧娜. 基底温度对电子束蒸发制备氧化铝薄膜的影响[J]. 应用光学, 2013, 34(5): 764-767.
[27]  杨辉, 张玲洁, 郭国忠, 杨理博, 沈建超, 吴梦怡, 林志建. 透明氧化铝薄膜的疏水性能研究[J]. 稀有金属材料与工程, 2010, 39(S2): 232-235.
[28]  徐尚君. 蓝宝石表面氧化钇薄膜的制备及性能研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2017.
[29]  Matsuoka, Y., Mathonnèire, S., Peters, S., et al. (2018) Broadband Multilayer Anti-Reflection Coating for Mid-Infrared Range from 7 μm to 12 μm. Applied Optics, 57, 1645-1649.
https://doi.org/10.1364/AO.57.001645

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133