全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分子动力学研究熔渣的微观结构特性
Research on the Microstructure Characteristics of Molten Slag Based on Molecular Dynamics

DOI: 10.12677/MEng.2022.92015, PP. 113-121

Keywords: 粒子迁移,分子动力学计算,键长,界面反应过程
Particle Migration
, Molecular Dynamic Calculations, Bond Length, Interface L Reaction Process

Full-Text   Cite this paper   Add to My Lib

Abstract:

冶金熔炼过程中的非铁组元在升温条件下的粒子迁移及分子尺度的相互作用直接影响着微观粒子之间的反应进程,进而影响着熔渣宏观物理化学性质。本文利用分子动力学计算分析CaO-SiO2-MgO(-Al2O3)熔渣体系的高温结构,并通过计算偏径向分布函数分析Ca-O、Mg-O、Si-O及Al-O的键长。结果表明:相较于Si-O和Al-O来说,Ca-O和Mg-O空间扩散速度较快,活跃能力更强。键长关系为Ca-O > Mg-O > Al-O > Si-O,且由于Ca-O、Mg-O的键长较大,反应势垒较小,使得Ca-O、Mg-O高温反应性好;CaO-SiO2-MgO体系中加入Al2O3时,因[AlO4]5?微观网络结构和反应特性与[SiO4]4?相近,可以部分地替代[SiO4]4?与碱性氧化物发生反应,导致Si-O的键长变短。通过红外光谱对熔渣结构进行了表征,红外光谱分析在一定程度上验证了分子动力学模拟结果的准确性。在CaO-SiO2-MgO熔渣体系加入Al2O3会加快微观粒子的扩散速率,以此改变了多元体系内部化学反应的进行。
The metallurgy reaction process was influenced directly by the particle migration and the interaction with the molecule scale of the non-ferrum component in the smelting process when the temperature was increased. In this paper, molecular dynamics calculations are used to analyze the high temperature structure of the CaO-SiO2-MgO (-Al2O3) slag system, and the bond lengths of Ca-O, Mg-O, Si-O and Al-O are analyzed by calculating the partial radial distribution function. The results show that compared with Si-O and Al-O, Ca-O and Mg-O have a faster spatial diffusion rate and a stronger active capacity. The bond length relationship is Ca-O > Mg-O > Al-O > Si-O, and because the bond length of Ca-O and Mg-O is larger, the reaction barrier is smaller, which makes Ca-O and Mg-O have good reactivity at high temperature. When Al2O3 is added to the system, because [AlO4]5? microscopic network structure and reaction characteristics are similar to [SiO4]4?, it can partially replace [SiO4]4? and react with alkaline oxides, resulting in shorter Si-O bond length. The structure of molten slag was characterized by infrared spectroscopy, which verified the accuracy of molecular dynamics simulation results to a certain extent. Adding Al2O3 to the CaO-SiO2-MgO slag system will accelerate the diffusion rate of microscopic particles and promote the progress of chemical reactions in the multi-element system.

References

[1]  吕学伟, 严志明, 庞正德, 白晨光, 梁栋, 谢皓. Al2O3对高炉渣物化性能和结构影响研究综述[J]. 钢铁, 2020, 55(2): 1-10.
[2]  Bouaziz, A., Hamzaoui, R., Guessasma, S., Lakhal, R., Achoura, D. and Leklou, N. (2017) Efficiency of High Energy over Conventional Milling of Granulated Blast Furnace Slag Powder to improve Mechanical Performance of Slag Cement Paste. Powder Technology, 308, 37-46.
https://doi.org/10.1016/j.powtec.2016.12.014
[3]  张淑会, 穆红旺, 孙艳芹, 吕庆. 高铝中钛高炉渣脱硫的动力学机制[J]. 钢铁, 2012, 47(8): 13-16.
[4]  谢皓, 王劲松, 邹忠平, 王刚, 徐小辉. 高炉炉渣脱硫能力分析[J]. 中国冶金, 2014, 24(12): 47-50.
[5]  Gan, M., Fan, X., Ji, Z.Y., Chen, X., Yin, L., Jiang, T., et al. (2015) High Temperature Mineralization Behavior of Mixtures during Iron Ore Sintering and Optimizing Methods. ISIJ International, 55, 742-750.
https://doi.org/10.2355/isijinternational.55.742
[6]  Hayashi, M., Suzuki, K., Maeda, Y. and Watanabe, T. (2016) Effects of 2CaO?SiO2 and 2CaO?Al2O3?SiO2 on Primary Slag Melting of Sinters in the Cohesive Zone of a Blast Furnace. ISIJ International, 56, 220-225.
https://doi.org/10.2355/isijinternational.ISIJINT-2015-461
[7]  Kim, H., Wan, H.K., Sohn, I. and Min, D.J. (2010) The Effect of MgO on the Viscosity of the CaO-SiO2-20??wt%Al2O3-MgO Slag System. Steel Research International, 81, 261-264.
https://doi.org/10.1002/srin.201000019
[8]  Ma, X.D., Wang, G., Wu, S.L., Zhu, J. and Zhao, B. (2015) Phase Equilibria in the CaO-SiO2-Al2O3-MgO System with CaO/SiO2 Ratio of 1.3 Relevant to Iron Blast Furnace Slags. ISIJ International, 55, 2310-2317.
https://doi.org/10.2355/isijinternational.ISIJINT-2015-263
[9]  Oh, J.S. and Lee, J. (2015) Composition-Dependent Reactive Wetting of Molten Slag on Coke Substrates. Journal of Materials Science, 51, 1813-1819.
https://doi.org/10.1007/s10853-015-9588-6
[10]  Wu, C., Cheng, G. and Ma, Q. (2014) Calculating Models on the Surface Tension of CaO-FeO-SiO2 Molten Slags. Research of Materials Science, 3, 10-16.
[11]  Yang, X., He, Z.J., Yu, J.K., Zhang, Y., Yuan, L. and Mao, F. (2020) Influence of Interface Electric Field on Interaction between Molten Iron and Refractory Interface. Ceramics International, 46, 10180-10185.
https://doi.org/10.1016/j.ceramint.2020.01.009
[12]  Sahajwalla, V., Khanna, R. and Mehta, A.S. (2004) Influence of Chemical Compositions of Slag and Graphite on the Phenomena Occurring in the Graphite/Slag Interfacial Region. Metallurgical & Materials Transactions B, 35, 75-83.
https://doi.org/10.1007/s11663-004-0098-1
[13]  Kim, H.-S., Kim, J.G. and Yasushi, S. (2010) The Role of Molten Slag in Iron Melting Process for the Direct Contact Carburization: Wetting and Separation. ISIJ International, 50, 1099-1106.
https://doi.org/10.2355/isijinternational.50.1099
[14]  Cheng, G. and, Liao, N. (1999) Calculation Model for Surface Tension of Slag Melt. Journal of Iron and Steel Research International, 6, 17-20.
[15]  严照照, 张淑会, 张淑卿, 董晓旭, 郄亚娜. 高炉渣微观结构对其冶金性能的影响[J]. 钢铁钒钛, 2017, 38(4): 123-129.
[16]  Sun, Y.Q. and Zhang, Z.T. (2015) Structural Roles of Boron and Silicon in the CaO-SiO2-B2O3 Glasses Using FTIR, Raman, and NMR Spectroscopy. Metallurgical and Materials Transactions B, 46, 1549-1554.
https://doi.org/10.1007/s11663-015-0374-2
[17]  Han, S.M., Park, J.G. and Sohn, I. (2011) Surface Kinetics of Nitrogen Dissolution and Its Correlation to the Slag Structure in the CaO SiO2, CaO Al2O3, and CaO SiO2 Al2O3 Slag System. Journal of Non-Crystalline Solids, 357, 2868-2875.
https://doi.org/10.1016/j.jnoncrysol.2011.03.023
[18]  Rajavaram, R., Kim, H., Lee, C.-H., Cho, W.-S., Lee, C.H. and Lee, J. (2017) Effect of Al2O3 Concentration on Density and Structure of (CaO-SiO2)-xAl2O3 Slag. Metallurgical & Materials Transactions B, 48, 1596-1603.
https://doi.org/10.1007/s11663-017-0964-2
[19]  常治宇, 张建良, 许仁泽, 焦克新, 白兴全, 韩旺学. Al2O3对酒钢低铝渣黏度的影响及热力学分析[J]. 中国冶金, 2018, 28(8): 6-9+27.
[20]  李强, 潘涛, 张翰洋, 丁浩. 高铝熔渣物相析出演变规律研究[J]. 东北大学学报, 2018, 39(7): 995-999.
[21]  Song, P. and Wen, D. (2010) Molecular Dynamics Simulation of the Sintering of Metallic Nanoparticles. Journal of Nanoparticle Research, 12, 823-829.
https://doi.org/10.1007/s11051-009-9718-7
[22]  江露. CaO-SiO2-P2O5-FeO熔渣结构与粘度的基础研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2015.
[23]  王浩男, 玄伟伟, 夏德宏. 不同温度下煤灰熔渣的结构演变规律[J]. 化工学报, 2019, 70(8): 3094-3103.
[24]  张晓博, 刘承军, 姜茂发. CaF2对CaO-Al2O3-CaF2熔体结构影响的分子动力学研究[J]. 东北大学学报, 2020, 41(4): 510-515.
[25]  刘克, 韩毅华, 杨帆, 等. MgO对CaO-Al2O3基四元系保护渣熔渣微结构的影响[J]. 钢铁, 2020, 55(5): 52-58.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413