全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Continuous Variable Quantum MNIST Classifiers
—Classical-Quantum Hybrid Quantum Neural Networks

DOI: 10.4236/jqis.2022.122005, PP. 37-51

Keywords: Quantum Computing, Quantum Machine Learning, Quantum Neural Networks, Continuous Variable Quantum Computing, Photonic Quantum Computing, Classical Quantum Hybrid Model, Quantum MNIST Classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to nm classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size nm. They are then interpreted as one-hot encoded labels, padded with nm - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.

References

[1]  Killoran, N., Bromley, T., Arrazola, J., Schuld, M., Quesada, N. and Lloyd, S. (2019) Continuous Variable Quantum Neural Networks, Physical Review Research, 1, Article ID: 033063.
https://doi.org/10.1103/PhysRevResearch.1.033063
[2]  Weedbrook, C., et al. (2012) Gaussian Quantum Information. Reviews of Modern Physics, 84, 621.
https://doi.org/10.1103/RevModPhys.84.621
[3]  Nielsen, M. and Chuang, I. (2010) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[4]  Schuld, M., Bocharou, A., Svore, K. and Wiebe, N. (2018) Circuit-Centric Quantum Classifiers. Physical Review A, 101, Article ID: 032308.
https://doi.org/10.1103/PhysRevA.101.032308
[5]  Bergholm, V., et al. (2018) PennyLane: Automatic Differentiation of Hybrid Quantum-Classical Computations. arXiv:1811.04968.
[6]  Braunstein, S. and Loock, P. (2005) Quantum Information with Continuous Variables. Review of Modern Physics, 77, 513.
https://doi.org/10.1103/RevModPhys.77.513
[7]  Knill, E., Laflamme, R. and Milburn, G.J. (2001) A Scheme for Efficient Quantum Computation with Linear Optics. Nature, 409, 46-52.
https://doi.org/10.1038/35051009
[8]  Neergaard-Nielsen, J. (2008) Generation of Single Photons and Schrodinger Kitten States of Light. PhD Thesis, Technical University of Denmark, Lyngby.
[9]  18.06SC Linear Algebra Fall (2011) Singular Value Decomposition. MIT OpenCourseWare.
https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/resources/lecture-29-singular-value-decomposition/

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133