全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Multisectoral Dynamic Model for Energy, Economic, and Climate Scenario Analysis

DOI: 10.4236/lce.2022.132005, PP. 70-111

Keywords: Economy-Wide Modeling, Climate Scenario, Stranded Assets

Full-Text   Cite this paper   Add to My Lib

Abstract:

The MIT Economic Projection and Policy Analysis (EPPA) model has been widely used in energy, land use, technology, and climate policy studies. Here, we provide details of revisions that form the basis of EPPA7, the current version. Key updates include: 1) using the latest Global Trade Analysis Project (GTAP-power) database as the core economic data for the world economy; 2) updating regional economic growth projections; 3) separating extant and vintage capital of the previously aggregated fossil generation; 4) using an innovative approach to calculate the costs of backstop (i.e., advanced) power generation options based on engineering data from the Energy Information Administration; 5) identifying base year biofuel output from existing sectors; and 6) re-parameterizing electric vehicles based on recent studies. Our simulations demonstrate that with widespread mitigation policies worldwide, regions relying heavily on fossil fuel imports benefit from lower global fossil fuel prices when their domestic emissions targets are lenient, but the benefits dissipate when deeper emissions cuts are imposed domestically. We also provide an illustration how the model output can be used to calculate the net present values of unrealized fossil fuel production and stranded assets from idling coal power generation under various policy scenarios.

References

[1]  Armington, P. S. (1969). A Theory of Demand for Products Distinguished by Place of Production. International Monetary Fund Staff Papers, 16, 159-176.
https://doi.org/10.2307/3866403
[2]  Babiker, M. H., Reilly, J. M., Mayer, M., Eckaus, R. S., Wing, I. S., & Hyman, R. C. (2001). The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Revisions, Sensitivities, and Comparisons of Results. MIT JPSPGC Report 71.
https://globalchange.mit.edu/publication/14577
[3]  Baldos, U. L., & Corong, E. (2020). Development of GTAP 10 Land Use and Land Cover Data Base for Years 2004, 2007, 2011 and 2014. GTAP Research Memorandum No. 36.
https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6187
[4]  Burniaux, J., Nicoletti, G., & Oliveira-Martins, J. (1992). GREEN: A Global Model for Quantifying the Cost of Policies to Curb CO2 Emissions. OECD Economic Studies No. 19.
[5]  Calvin, K. V., Beach, R., Gurgel, A., Labriet, M., & Loboguerrero Rodriguez, A. M. (2016). Agriculture, Forestry, and Other Land-Use Emissions in Latin America. Energy Economics, 56, 615-624.
https://doi.org/10.1016/j.eneco.2015.03.020
[6]  Caron, J., Rausch, S., & Winchester, N. (2014). Leakage from Sub-National Climate Policy: The Case of California’s Cap-and-Trade Program. Energy Journal, 36, 167-190.
https://doi.org/10.5547/01956574.36.2.8
[7]  Chai, H. C., Hong, W. H., Reilly, J. M., Paltsev, S., & Chen, Y. H. H. (2019). Will Greenhouse Gas Mitigation Policies Abroad affect the Domestic Economy? The Case of Taiwan. Climate Change Economics, 10, 1-26.
https://doi.org/10.1142/S2010007819500167
[8]  Chen, Y. H. H., Landry, E., & Reilly, J. (2022). An Economy-Wide Framework for Assessing the Stranded Assets in the Energy Production Sector under Climate Policies. GTAP Climate Change Economics. Forthcoming.
https://doi.org/10.1142/S2010007823500033
[9]  Chen, Y. H. H., Paltsev, S., Reilly, J., Morris, J., & Babiker, M. (2016). Long-Term Economic Modeling for Climate Change Assessment. Economic Modeling, 52, 867-883.
https://doi.org/10.1016/j.econmod.2015.10.023
[10]  Chen, Y. H. H., Paltsev, S., Reilly, J., Morris, J., Karplus, V., Gurgel, A., Winchester, N., Kishimoto, P., Blanc, é., & Babiker, M. (2017). The MIT Economic Projection and Policy Analysis (EPPA) Model: Version 5. MIT JPSPGC Technical Note 16.
https://globalchange.mit.edu/sites/default/files/MITJPSPGC_TechNote16.pdf
[11]  Chepeliev, M. (2020). GTAP-Power 10 Data Base: A Technical Note. GTAP Research Memorandum No. 31.
https://doi.org/10.21642/JGEA.050203SM1F
https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=5938
[12]  Choumert, F., Paltsev, S., & Reilly, J. (2006). Improving the Refining Sector in EPPA. Joint Program on the Science and Policy of Global Change, MIT Joint Program Technical Note No. 9.
https://globalchange.mit.edu/publication/14089
[13]  Climate Watch (2021). Historical GHG Emissions. Climate Watch.
https://www.climatewatchdata.org/ghg-emissions?breakBy=countries&end_year=2018§ors=industrial-processes&source=CAIT&start_year=1990
[14]  Congressional Research Service (2019). Advanced Nuclear Reactors: Technology Overview and Current Issues. Congressional Research Service.
https://crsreports.congress.gov/product/pdf/R/R45706
[15]  Cossa, P. (2004). Uncertainty Analysis of the Cost of Climate Policies. Master’s Thesis, Technology and Policy Program, MIT.
[16]  EIA (2019). Cost and Performance Characteristics of New Generating Technologies. Annual Energy Outlook 2019. U.S. Energy Information Administration (EIA).
[17]  European Commission (2013, 2016, 2019). EDGAR - Emissions Database for Global Atmospheric Research. European Commission. Brussels, Belgium.
[18]  Felzer, B., Kicklighter, D., Melillo, J., & Wang, C. (2004). Effects of Ozone on Net Primary Production and Carbon Sequestration in the Conterminous United States Using a Biogeochemistry Model. Tellus B, 56, 230-248.
https://doi.org/10.1111/j.1600-0889.2004.00097.x
[19]  Ghandi, A., & Paltsev, S. (2019). Representing a Deployment of Light-Duty Internal Combustion and Electric Vehicles in Economy-Wide Models. MIT JPSPGC Technical Note Technical Note No. 17.
http://globalchange.mit.edu/publication/17199
[20]  Gillespie, C. W. (2011). A General Equilibrium Analysis of Climate Policy for Aviation. Master’s Thesis, Technology and Policy Program, MIT.
http://globalchange.mit.edu/publication/15545
[21]  Gitiaux, X., Reilly, J. M., & Paltsev, S. (2011). Future Yield Growth: What Evidence from Historical Data? MIT JPSPGC Report 199.
https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt199.pdf
[22]  Gurgel, A. C., Paltsev, S., & Breviglieri, G. V. (2019). The Impacts of the Brazilian NDC and Their Contribution to the Paris Agreement on Climate Change. Environment and Development Economics, 24, 395-412.
https://doi.org/10.1017/S1355770X1900007X
[23]  Gurgel, A., Chen, Y. H. H., Paltsev, S., & Reilly, J. (2016). CGE Models: Linking Natural Resources to the CGE Framework. In A. Dinar et al. (Eds.), World Scientific Reference on Natural Resources and Environmental Policy in the Era of Global Change, Vol. 3. Computable General Equilibrium Models (pp. 57-98). World Scientific Publishing.
https://www.worldscientific.com/worldscibooks/10.1142/9747
https://doi.org/10.1142/9789813208179_0003
[24]  Gurgel, A., Cronin, T., Reilly, J., Paltsev, S., Kicklighter, D., & Melillo, J. (2011). Food, Fuel, Forests, and the Pricing of Ecosystem Services. American Journal of Agricultural Economics, 93, 342-348.
https://doi.org/10.1093/ajae/aaq087
[25]  Gurgel, A., Reilly, J. M., & Paltsev, S. (2007). Potential Land Use Implications of a Global Biofuels Industry. Journal of Agricultural & Food Industrial Organization, 5, Article No. 9.
https://doi.org/10.2202/1542-0485.1202
[26]  IEA (2016). World Energy Outlook. International Energy Agency (IEA).
https://www.iea.org/reports/world-energy-outlook-2016
[27]  IEA (2017). World Energy Outlook. International Energy Agency (IEA).
https://www.iea.org/reports/world-energy-outlook-2017
[28]  IEA (2019). IEA World Energy Statistics and Balances. International Energy Agency (IEA).
https://www.oecd-ilibrary.org/energy/data/iea-world-energy-statistics-and-balances_enestats-data-en
[29]  IEA (2020). World Energy Outlook. International Energy Agency (IEA).
https://www.iea.org/reports/world-energy-outlook-2020
[30]  Jacoby, H. D., Chen, Y. H. H., & Flannery, B. P. (2017). Informing Transparency in the Paris Agreement: The Role of Economic Models. Climate Policy, 17, 873-890.
https://www.tandfonline.com/doi/full/10.1080/14693062.2017.1357528
https://doi.org/10.1080/14693062.2017.1357528
[31]  Karplus, V. (2011). Climate and Energy Policy for U.S. Passenger Vehicles: A Technology-Rich Economic Modeling and Policy Analysis. Ph.D. Thesis, Engineering Systems Division, MIT.
http://globalchange.mit.edu/publication/13733
[32]  Kishimoto, P. N. (2018). Transport Demand in China: Methods for Estimation, Projection, and Policy Assessment. Ph.D. Thesis, Institute for Data, Systems, and Society, Massachusetts Institute of Technology.
http://globalchange.mit.edu/publication/17175
[33]  Landry, E., Schlosser, C. A., Chen, Y. H. H., Reilly, J., & Sokolov, A. (2019). MIT Scenarios for Assessing Climate-Related Financial Risk. Joint Program Report 339, 72 p.
http://globalchange.mit.edu/publication/17392
[34]  Lee, H., Oliveira-Martins, J., & van der Mensbrugghe, D. (1994). The OECD GREEN Model: An Updated Overview. OECD Development Centre, Technical Paper No. 97.
[35]  Makarov, I., Chen, Y. H. H., & Paltsev, S. (2020). Impacts of Climate Change Policies Worldwide on the Russian Economy. Climate Policy, 20, 1242-1256.
https://doi.org/10.1080/14693062.2020.1781047
[36]  Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., Felzer, B. S., Wang, X., Sokolov, A. P., & Schlosser, C. A. (2009). Indirect Emissions from Biofuels: How Important? Science, 326, 1397-1399.
https://doi.org/10.1126/science.1180251
[37]  MIT Energy Initiative (2019). Insights into Future Mobility. MIT Energy Initiative.
http://energy.mit.edu/insightsintofuturemobility
[38]  Monier, E., Paltsev, S., Sokolov, A., Chen, Y. H. H., Gao, X., Ejaz, Q., Couzo, E., Schlosser, C. A., Dutkiewicz, S., Fant, C., Scott, J., Kicklighter, D., Morris, J., Jacoby, H., Prinn, R., & Haigh, M. (2018). Toward a Consistent Modeling Framework to Assess Multi-Sectoral Climate Impacts. Nature Communications, 9, Article No. 660.
https://doi.org/10.1038/s41467-018-02984-9
[39]  Morris, J. F., Reilly, J. M., & Chen, Y. H. H. (2019). Advanced Technologies in Energy-Economy Models for Climate Change Assessment. Energy Economics, 80, 476-490.
https://doi.org/10.1016/j.eneco.2019.01.034
[40]  OECD (2020). Real GDP Long-Term Forecast. The Organization for Economic Cooperation and Development (OECD).
https://data.oecd.org/gdp/real-gdp-long-term-forecast.htm
[41]  Our World in Data (2022). Emissions by Sector. The Global Change Data Lab.
https://ourworldindata.org/emissions-by-sector
[42]  Paltsev, S., Jacoby, H. D., Reilly, J. M., Ejaz, Q. J., O’Sullivan, F., Morris, J., Rausch, S., Winchester, N., & Kragha, O. (2010). The Future of US Natural Gas Production, Use, and Trade. MIT JPSPGC Report 186.
https://globalchange.mit.edu/publication/14541
[43]  Paltsev, S., Reilly, J., Jacoby, H., Eckaus, R., McFarland, J., & Babiker, M. (2005). The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4. MIT JPSPGC Report 125.
http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt125.pdf
[44]  Paltsev, S., Schlosser, C. A., Chen, Y. H. H., Gao, X., Gurgel, A.. Jacoby, H., Morris, J., Prinn, R., Sokolov, A., & Strzepek, K. (2021). 2021 Global Change Outlook. MIT JPSPGC.
https://globalchange.mit.edu/sites/default/files/newsletters/files/2021-JP-Outlook.pdf
[45]  Prinn, R. G., Jacoby, H. D., Sokolov, A., Wang, C., Xiao, X., Yang, Z., Eckaus, R., Stone, P. H., Ellerman, A. D., Melillo, J. M., Fitzmaurice, J., Kicklighter, D., Holian G., & Liu, Y. (1998). Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies. MIT JPSPGC Report 36.
https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt36.pdf
[46]  Qin, L., Malik, M. Y., Latif, K., Khan, Z., Siddiqui, A. W., & Ali, S. (2021). The Salience of Carbon Leakage for Climate Action Planning: Evidence from the Next Eleven Countries. Sustainable Production and Consumption, 27, 1064-1076.
https://doi.org/10.1016/j.spc.2021.02.019
[47]  Ramberg, D. J., & Chen, Y. H. H. (2015). Updates to Disaggregating the Refined Oil Sector in EPPA: EPPA6-ROIL. Joint Program Technical Note TN#15, 33 p.
http://globalchange.mit.edu/publication/16271
[48]  Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLOS ONE, 8, e66428.
https://doi.org/10.1371/journal.pone.0066428
[49]  Reilly, J. M., & Fuglie, K. O. (1998). Future Yield Growth in Field Crops: What Evidence Exists? Soil and Tillage Research, 47, 275-290.
http://www.sciencedirect.com/science/article/pii/S0167198798001160
https://doi.org/10.1016/S0167-1987(98)00116-0
[50]  Reilly, J. M., Cronin, T., Gurgel, A., Schlosser, A., Melillo, J., Cai, Y., Paltsev, S., Sokolov, A., & Kicklighter, D. (2012). Using Land to Mitigate Climate Change: Hitting the Target, Recognizing the Trade-Offs. Environmental Science & Technology, 46, 5672-5679.
https://doi.org/10.1021/es2034729
[51]  Reilly, J. M., Prinn, R., Chen, Y. H. H., Sokolov, A., Gao, X., Schlosser, A., Morris, J., Paltsev, S., & Jacoby, H. D. (2018). Food, Water, Energy, Climate Outlook: Perspectives from 2018. MIT Joint Program on the Science and Policy of Global Change.
https://globalchange.mit.edu/sites/default/files/newsletters/files/2018-JP-Outlook.pdf
[52]  Reimer, J., & Hertel, T. W. (2004). Estimation of International Demand Behavior for Use with Input-Output Based Data. Economic Systems Research, 16, 347-366.
https://doi.org/10.1080/0953531042000304245
[53]  Rutherford, T. (1994). The GAMS/MPSGE and GAMS/MILES User Notes. GAMS Development Corporation.
[54]  Rutherford, T. (1999). Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax. Computational Economics, 14, 1-46.
[55]  Santos, L., Lucena, A. F. P., & Garaffa, R. (2019). Would Different Methodologies for Assessing Carbon Leakage Exposure Lead to Different Risk Levels? A Case Study of the Brazilian Industry. Climate Policy, 19, 1102-1116.
https://doi.org/10.1080/14693062.2019.1627180
[56]  Schmitz, C., van Meijl, H., Kyle, P., Nelson, G. C., Fujimori, S., Gurgel, A., Havlik, P., Heyhoe, E., D’croz, D. M., Popp, A., Sands, R., Tabeau, A., Van Der Mensbrugghe, D., Von Lampe, M., Wise, M., Blanc, E., Hasegawa, T., Kavallari, A., & Valin, H. (2014). Land-Use Change Trajectories up to 2050: Insights from a Global Agro-Economic Model Comparison. Agricultural Economics, 45, 69-84.
https://doi.org/10.1111/agec.12090
[57]  Selin, N. E., Wu, S., Nam, K. M., Reilly, J. M., Paltsev, S., Prinn, R. G., & Webster, M. D. (2009). Global Health and Economic Impacts of Future Ozone Pollution. Environmental Research Letters, 4, Article ID: 044014.
https://doi.org/10.1088/1748-9326/4/4/044014
[58]  Sohngen, B. (2007). Global Timber Market and Forestry data Project. Department of Agricultural, Environmental, and Development Economics, Ohio State University.
http://aede.osu.edu/research/forests-and-land-use/global-timber-market-and-forestry-data-project
[59]  Sohngen, B., Golub, A., & Hertel, T. (2009). The Role of Forestry in Carbon Sequestration in General Equilibrium Models. In T. Hertel, S. K. Rose, & R. S. J. Tol (Eds.), Economic Analysis of Land Use in Global Climate Policy (pp. 279-304). Routledge.
[60]  Wang, D. (2005). The Economic Impact of Global Climate and Tropospheric Ozone on World Agricultural Production. Master’s Thesis, MIT Technology and Policy Program, Engineering Systems Division.
http://globalchange.mit.edu/publication/14509
[61]  Webster, M. (2000). Uncertainty and Learning in Sequential Decision-Making: The Case of Climate Policy. Ph.D. Thesis, MIT Engineering Systems Division.
https://dspace.mit.edu/handle/1721.1/8870
[62]  Winchester, N., & Reilly, J. M. (2015). The Feasibility, Costs, and Environmental Implications of Large-Scale Biomass Energy. Energy Economics, 51, 188-203.
http://www.sciencedirect.com/science/article/pii/S0140988315001929
https://doi.org/10.1016/j.eneco.2015.06.016
[63]  World Resources Institute (2021). CAIT Climate Data Explorer. World Resources Institute (WRI).
http://cait.wri.org/
[64]  Yang, Z., Eckaus, R., Ellerman, A., & Jacoby, H. (1996). The MIT Emissions Prediction and Policy Analysis (EPPA) Model. MIT JPSPGC Report 6.
https://globalchange.mit.edu/sites/default/files/MITJPSPGC_Rpt6.pdf

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133