全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Low Gamma Irradiation on the Germination and Morphological Characteristics of Broad Beans (Vicia faba L.), Mung Beans (Vigna radiata L.), and Peas (Pisum sativum L.) Seedlings

DOI: 10.4236/nr.2022.135008, PP. 105-125

Keywords: Ionising Radiation, Morphometric Parameters, Germination Parameters, ICRP DCRLs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the effects of ionising radiation (IR) on plants has been a major focus of research. Acute high-dose effects are well-documented and understood (mainly through laboratory testing). Lower doses, on the other hand, are less understood, as low dosage research is controversial, and there are only a few studies that use low and ecologically relevant IR levels, particularly those conducted under controlled conditions. The effect of low gamma radiation was investigated in this study using Vicia faba L., Vigna radiata L., and Pisum sativum L. Healthy and viable seeds of these plants were irradiated with varying doses of gamma radiation (Cs137 source) and sown under controlled environmental conditions. The doses/dose rates used were within the scope of the International Commission on Radiological Protection’s Derived Consideration Reference Level (DCRL) for these groups of plants (1 - 10 mGyd1), so this study tested this DCRL. Observations were made on certain germination parameters and growth traits like germination percentage and rate, shoot and root length, seed weight, number of leaves, wet and dry biomass, plant height, leaf chlorophyll content, and leaf area. In the germination phase, the doses employed in this experiment did not affect the seeds’ weight, germination percentage, and rate, but there were some interesting effects on the root and shoot length; as all irradiated groups performed better than the control group (particularly the 16.2 mGy and 48.5

References

[1]  Ward, J.F. (1988) DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. In: Cohn, W.E. and Moldave, K., Eds., Progress in Nucleic Acid Research and Molecular Biology, Academic Press, Cambridge, 95-125.
https://doi.org/10.1016/S0079-6603(08)60611-X
[2]  Underhill, P.T. (1995) Naturally-Occurring Radioactive Materials: Principles and Practices. St. Lucie Press, Boca Raton.
[3]  Charles, M. (2001) UNSCEAR Report 2000: Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Journal of Radiological Protection: Official Journal of the Society for Radiological Protection, 21, 83-86. https://doi.org/10.1088/0952-4746/21/1/609
[4]  Møller, A.P. and Mousseau, T.A. (2015) Strong Effects of Ionizing Radiation from Chernobyl on Mutation Rates. Scientific Reports, 5, Article No. 8363
https://doi.org/10.1038/srep08363
[5]  Beresford, N.A. and Copplestone, D. (2011) Effects of Ionizing Radiation on Wildlife: What Knowledge Have We Gained between the Chernobyl and Fukushima Accidents? Integrated Environmental Assessment and Management, 7, 371-373.
https://doi.org/10.1002/ieam.238
[6]  Chaudhuri, S.K. (2002) A Simple and Reliable Method to Detect Gamma Irradiated Lentil (Lens culinaris Medik.) Seeds by Germination Efficiency and Seedling Growth Test. Radiation Physics and Chemistry, 64, 131-136.
https://doi.org/10.1016/S0969-806X(01)00467-4
[7]  Kim, J., Baek, M., Chung, B.Y., Wi, S.G. and Kim, J. (2004) Alterations in the Photosynthetic Pigments and Antioxidant Machineries of Red Pepper (Capsicum annuum L.) Seedlings from Gamma-Irradiated Seeds. Journal of Plant Biology, 47, 314-321. https://doi.org/10.1007/BF03030546
[8]  Ling, A., Kiong, P., Lai, A., Hussein, S. and Harun, A.R. (2008) Physiological Responses of Orthosiphon stamineus Plantles to Gamma Irradiation. American-Eurasian Journal of Sustainable Agriculture, 2, 135-149.
[9]  Majeed, A., Muhammad, Z., Ullah, Z. and Ullah, R. (2017) Effect of Gamma Irradiation on Growth and Post-Harvest Storage of Vegetables. PSM Biological Research, 2, 30-35.
[10]  Jan, S., Parween, T., Soddiqi, T. and Uzzafar, M. (2011) Effect of Gamma Radiation on Morphological, Biochemical, and Physiological Aspects of Plants and Plant Products. Environmental Reviews, 20, 17-39. https://doi.org/10.1139/a11-021
[11]  Kim, J., Moon, Y.R., Lee, M.H., Kim, J.H., Wi, S.G., Park, B., Kim, C.S. and Chung, B.Y. (2011) Photosynthetic Capacity of Arabidopsis Plants at the Reproductive Stage Tolerates γ Irradiation. Journal of Radiation Research, 52, 441-449.
https://doi.org/10.1269/jrr.10157
[12]  Caplin, N. and Willey, N. (2018) Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Frontiers in Plant Science, 9, Article No. 847. https://doi.org/10.3389/fpls.2018.00847
[13]  Borzouei, A., Kafi, M., Khazaei, H.R., Naseriyan, B. and Majdabadi, A. (2010) Effects of Gamma Radiation on Germination and Physiological Aspects of Wheat (Triticum aestivum l.) Seedlings. Pakistan Journal of Botany, 42, 2281-2290.
[14]  Wang, J., Yu, Y. and Tian, X. (2012) Effect of γ-Ray Irradiation on the Germinating Characteristics of Wheat Seed. Radiation Physics and Chemistry, 81, 463-465.
https://doi.org/10.1016/j.radphyschem.2011.12.024
[15]  Beyaz, R., Kahramanogullari, C.T., Yildiz, C., Darcin, E.S. and Yildiz, M. (2016) The Effect of Gamma Radiation on Seed Germination and Seedling Growth of Lathyrus chrysanthus Boiss. under in Vitro Conditions. Journal of Environmental Radioactivity, 162-163, 129-133. https://doi.org/10.1016/j.jenvrad.2016.05.006
[16]  Kusmiyati, F., Sas, M.G.A. and Herwibawa, B. (2018) Mutagenic Effects of Gamma Rays on Soybean (Glycine max L.) Germination and Seedlings. IOP Conference Series: Earth and Environmental Science, 102, Article ID: 012059.
https://doi.org/10.1088/1755-1315/102/1/012059
[17]  Asare, A.T., Mensah, F., Acheampong, S., Asare-bediako, E. and Armah, J. (2017) Effects of Gamma Irradiation on Agromorphological Characteristics of Okra (Abelmoschus esculentus L. Moench.). Advances in Agriculture, 2017, Article ID: 2385106. https://doi.org/10.1155/2017/2385106
[18]  Bonde, P., Balasaheb, S., Konkan, K., Vidypeeth, Gimhavanekar, V., Balasaheb, S., Konkan, K. and Vidypeeth. (2020) Effect of Gamma Radiation on Germination and Seedling Parameters of Mung Bean (Vigna radiata). International Journal of Current Microbiology and Applied Sciences, No. 11, 1582-1587.
[19]  Khan, M.W., Sareer, M., Akhtar, N., Muhammad, Z., Iqbal, A., Rahman, M., Ahmad, S.K., Munir, I. and Khalid Shah. (2021) Impact of Gamma Irradiation on Morphological and Genetic Characterization of Pea (Pisum sativum L.). Mitteilungen Klosterneuburg, 71, 29-47.
[20]  Siahpoosh, M.R., Tahmasebi, B., Nabati Ahmadi, D. and Rahimi, M. (2021) The Dose Response and Mutation Induction by Gamma Ray in Vicia faba Cv. Saraziri. Journal of Plant Productions, 43, 517-526.
[21]  Díaz-López, E.L., Garcia, S.A.L., Morales R.A., Baez, R.I., Perez, V.E., Olivar H.A., Vargas, R.E.J., Hernandez, H.P., De la Cruz, T.E., Garcia, A.J.M. and Loeza, C.J.M. (2018) Effect of Gamma Radiation of 60Co on Sunflower Plants (Helianthus annuus L.) (Asteraceae), from Irradiated Achenes. Scientia Agropecuaria, 9, 313-317.
https://doi.org/10.17268/sci.agropecu.2018.03.02
[22]  Arena, C., Micco, V.D. and Maio, A.D. (2014) Growth Alteration and Leaf Biochemical Responses in Phaseolus vulgaris Exposed to Different Doses of Ionising Radiation. Plant Biology, 16, 194-202. https://doi.org/10.1111/plb.12076
[23]  Caplin, N.M., Halliday, A. and Willey, N.J. (2020) Developmental, Morphological and Physiological Traits in Plants Exposed for Five Generations to Chronic Low-Level Ionising Radiation. Frontiers in Plant Science, 11, Article No. 389.
https://doi.org/10.3389/fpls.2020.00389
[24]  International Commission on Radiological Protection (2008) Environmental Protection: The Concept and Use of Reference Animals and Plants. Annals of the ICRP, 38, 1-242. https://doi.org/10.1016/j.icrp.2008.10.006
[25]  International Commission on Radiological Protection (2014) ICRP Publication 124: Protection of the Environment under Different Exposure Situations. Annals of the ICRP, 43, 1-58. https://doi.org/10.1177/0146645313497456
[26]  Copplestone, D., Hirth, G.A., Cresswell, T. and Johansen, M.P. (2020) Protection of the Environment. Annals of the ICRP, 49, 46-56.
https://doi.org/10.1177/0146645320944291
[27]  Beresford, N.A., Horemans, N., Copplestone, D., Raines, K.E., Orizaola, G., Wood, M.D., Laanen, P., Whitehead, H.C., Burrows, J.E., Tinsley, M.C., Smith, J.T., Bonzom, J., Gagnaire, B., Adam-Guillermin, C., Gashchak, S., Jha, A.N., de Menezes, A., Willey, N. and Spurgeon, D. (2020) Towards Solving a Scientific Controversy—The Effects of Ionising Radiation on the Environment. Journal of Environmental Radioactivity, 211, Article ID: 106033.
https://doi.org/10.1016/j.jenvrad.2019.106033
[28]  Holmstrup, M., Bindesbøl, A., Oostingh, G.J., Duschl, A., Scheil, V., Köhler, H., Loureiro, S., Soares, Amadeu M.V.M., Ferreira, A.L.G., Kienle, C., Gerhardt, A., Laskowski, R., Kramarz, P.E., Bayley, M., Svendsen, C. and Spurgeon, D.J. (2010) Interactions between Effects of Environmental Chemicals and Natural Stressors: A Review. The Science of the Total Environment, 408, 3746-3762.
https://doi.org/10.1016/j.scitotenv.2009.10.067
[29]  Saghirzadeh, M., Gharaati, M.R., Mohammadi, S. and Ghiassi-Nejad, M. (2008) Evaluation of DNA Damage in Root Cells of Allium cepa Growing in Soil of High Background Radiation Areas of Ramsar Iran. Journal of Environmental Radioactivity, 99, 1698-1702. https://doi.org/10.1016/j.jenvrad.2008.03.013
[30]  Ghiassi-Nejad, M., Beitollahi, M.M., Asefi, M. and Reza-Nejad, F. (2003) Exposure to (226)Ra from Consumption of Vegetables in the High-Level Natural Radiation Area of Ramsar-Iran. Journal of Environmental Radioactivity, 66, 215-225.
https://doi.org/10.1016/S0265-931X(02)00108-X
[31]  Hayashi, G., Moro, C.F., Rohila, J.S., Shibato, J., Kubo, A., Imanaka, T., Kimura, S., Ozawa, S., Fukutani, S., Endo, S., Ichikawa, K., Agrawal, G.K., Shioda, S., Hori, M., Fukumoto, M. and Rakwal, R. (2015) 2D-DIGE-Based Proteome Expression Changes in Leaves of Rice Seedlings Exposed to Low-Level Gamma Radiation at Iitate Village, Fukushima. Plant Signaling & Behavior, 10, e1103406.
https://doi.org/10.1080/15592324.2015.1103406
[32]  International Atomic Energy Agency (2021) International Atomic Energy Agency Power Reactor Information System Database. https://pris.iaea.org/PRIS/home.aspx
[33]  Sofi, B.A., Wani, I.A., Masoodi, F.A., Saba, I. and Muzaffar, S. (2013) Effect of Gamma Irradiation on Physicochemical Properties of Broad Bean (Vicia faba L.) Starch. Food Science & Technology, 54, 63-72.
https://doi.org/10.1016/j.lwt.2013.05.021
[34]  Verma, R. and Purbiya, R. (2017) Effects of Gamma Radiations on Seed Germination and Morphological Characteristics of Pea (Pisum sativum L.). Indian Journal of Plant Sciences, 6, 21-25.
[35]  Naik G., M., Panoth, A. and Venkatachalapathy, N. (2020) Mung Bean. In: Manickavasagan, A. and Thirunathan, P., Eds., Pulses: Processing and Product Development, Springer, Cham, 213-228.
https://doi.org/10.1007/978-3-030-41376-7_12
[36]  Jimenez-Lopez, J.C., Singh, K.B., Clemente, A., Nelson, M.N., Ochatt, S. and Smith, P.M.C. (2020) Editorial: Legumes for Global Food Security. Frontiers in Plant Science, 11, Article No. 926. https://doi.org/10.3389/fpls.2020.00926
[37]  Royal Horticultural Society (2021) Pisum sativum ‘Terrain’.
http://www.rhs.org.uk/plants/328575/pisum-sativum-terrain-pbr/details
[38]  Royal Horticultural Society (2021) Vicia faba ‘Aguadulce’.
http://www.rhs.org.uk/plants/350058/i-vicia-faba-i-aguadulce/details
[39]  Basu, P.S., Pratap, A., Gupta, S., Sharma, K., Tomar, R. and Singh, N.P. (2019) Physiological Traits for Shortening Crop Duration and Improving Productivity of Greengram (Vigna radiata L. Wilczek) under High Temperature. Frontiers in Plant Science, 10, Article No. 1508. https://doi.org/10.3389/fpls.2019.01508
[40]  Gali, K.K., Tar’an, B., Madoui, M., van der Vossen, E., van Oeveren, J., Labadie, K., Berges, H., Bendahmane, A., Lachagari, R.V.B., Burstin, J. and Warkentin, T. (2019) Development of a Sequence-Based Reference Physical Map of Pea (Pisum sativum L.). Frontiers in Plant Science, 10, Article No. 323.
https://doi.org/10.3389/fpls.2019.00323
[41]  Nair, R.M., Pandey, A.K., War, A.R., Hanumantharao, B., Shwe, T., Alam, A., Pratap, A., Malik, S.R., Karimi, R., Mbeyagala, E.K., Douglas, C.A., Rane, J. and Schafleitner, R. (2019) Biotic and Abiotic Constraints in Mungbean Production-Progress in Genetic Improvement. Frontiers in Plant Science, 10, Article No. 1340.
https://doi.org/10.3389/fpls.2019.01340
[42]  Warne, T., Ahmed, S., Byker Shanks, C. and Miller, P. (2019) Sustainability Dimensions of a North American Lentil System in a Changing World. Frontiers in Sustainable Food Systems, 3, Article No. 88.
https://doi.org/10.3389/fsufs.2019.00088
[43]  ISTA Germination Committee (2009) ISTA Handbook on Seedling Evaluation. 3rd Edition, ISTA, Bassersdorf.
[44]  International Seed Testing Association (1987) International Seed Testing Association: Handbook of Vigor Test Methods. 2nd Edition, ISTA, Zurich.
[45]  Edwards, R.L. and Sandstorm, F.J. (1987) After Ripening and Harvesting Effects on Tabasco Pepper Seed Germination Performance. HortScience, 22, 473-475.
[46]  Gashchak, S. (2016) Assessment of Radiation Effects in Birds Breeding in Red Forest Area (2003-2005): Problems of Research Approaches and Interpretation of the Results. COMET Workshop Report: Thirty Years after the Chernobyl Accident: What Do We Know about the Effects of Radiation on the Environment, Chernihiv, 29 August-1 September 2016, 1-2.
[47]  Beaugelin-Seiller, K., Garnier-Laplace, J. and Beresford, N.A. (2020) Estimating Radiological Exposure of Wildlife in the Field. Journal of Environmental Radioactivity, 211, Article ID: 105830. https://doi.org/10.1016/j.jenvrad.2018.10.006
[48]  Abdalla, M., El-Haggan, E., Azzam, C. and Abdel-Salam, H. (2017) Investigations on Faba Beans, Vicia faba L. 41: Effects of Gamma-Ray Treatments on Characters and Variation in Four Varieties. Egyptian Journal of Plant Breeding, 21, 401-409.
https://doi.org/10.12816/0046434
[49]  Aney, A. (2013) Effect of Gamma Irradiation on Yield Attributing Characters in Two Varieties of Pea (Pisum sativum L.). International Journal of Life Sciences, 1, 241-247.
[50]  David, T.S., Falusi, O., Daudu, O., Abdulhakeem, A. and Liman, M. (2018) Effects of Gamma Irradiation on the Agro-Morphological Traits of Selected Nigerian Eggplant (Solanum aethiopicum L.) Accessions. GSC Biological and Pharmaceutical Sciences, 2, 23-30. https://doi.org/10.30574/gscbps.2018.2.3.0014
[51]  Tshilenge-Lukanda, L., Kalonji-Mbuyi, A., Nkongolo, K. and Kizungu, R. (2013) Effect of Gamma Irradiation on Morpho-Agronomic Characteristics of Groundnut (Arachis hypogaea L.). American Journal of Plant Sciences, 4, 2186-2192.
https://doi.org/10.4236/ajps.2013.411271
[52]  Thanki, R.J., Patel, K.C. and Patel, R.D. (2007) Lipase Activity of Gamma-Irradiated Castor Seeds Germinated in Dark. Earth Environmental Science, 10, 211-214.
https://doi.org/10.1002/jpln.19651100306
[53]  Dhakshanamoorthy, D., Selvaraj, R. and Chidambaram, A.L.A. (2011) Induced Mutagenesis in Jatropha curcas L. Using Gamma Rays and Detection of DNA Polymorphism through RAPD Marker. Comptes Rendus Biologies, 334, 24-30.
https://doi.org/10.1016/j.crvi.2010.11.004
[54]  Khan, W.M., Muhammad, Z., Akhtar, N., Burni, T., Younas, A. and Umar, N. (2018) Gamma Radiation Induced Mutation in M2 Generation of Pea (Pisum sativum L.). Pure and Applied Biology, 7, 832-839.
https://doi.org/10.19045/bspab.2018.700102
[55]  Aynehband, A. and Afsharinafar, K. (2012) Effect of Gamma Irradiation on Germination Characters of Amaranth Seeds. European Journal of Experimental Biology, 2, 995-999.
[56]  Nagata, T., Todoriki, S. and Kikuchi, S. (2004) Radial Expansion of Root Cells and Elongation of Root Hairs of Arabidopsis thaliana Induced by Massive Doses of Gamma Irradiation. Plant and Cell Physiology, 45, 1557-1565.
https://doi.org/10.1093/pcp/pch178
[57]  Çelik, Ö, Atak, C. and Suludere, Z. (2014) Response of Soybean Plants to Gamma Radiation: Biochemical Analyses and Expression Patterns of Trichome Development. Plant OMICS, 7, 382-391.
[58]  Sever Mutlu, S., Djapo, H., Ozmen, S., Selim, C. and Tuncel, N. (2015) Gamma-Ray Irradiation Induces Useful Morphological Variation in Bermudagrass. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43, 515-520.
https://doi.org/10.15835/nbha4329762
[59]  van Hoeck, A., Horemans, N., Nauts, R., Van Hees, M., Vandenhove, H. and Blust, R. (2017) Lemna minor Plants Chronically Exposed to Ionising Radiation: RNA-Seq Analysis Indicates a Dose Rate Dependent Shift from Acclimation to Survival Strategies. Plant Science: An International Journal of Experimental Plant Biology, 257, 84-95. https://doi.org/10.1016/j.plantsci.2017.01.010
[60]  Geras’kin, S.A., Oudalova, A.A., Dikarev, V.G., Dikareva, N.S., Mozolin, E.M., Hinton, T., Spiridonov, S.I., Copplestone, D. and Garnier-Laplace, J. (2012) Effects of Chronic Exposure in Populations of Koeleria gracilis Pers. from the Semipalatinsk Nuclear Test Site, Kazakhstan. Journal of Environmental Radioactivity, 104, 55-63.
https://doi.org/10.1016/j.jenvrad.2011.09.015
[61]  Geraskin, S.A., Dikarev, V.G., Zyablitskaya, Y.Y., Oudalova, A.A., Spirin, Y.V. and Alexakhin, R.M. (2003) Genetic Consequences of Radioactive Contamination by the Chernobyl Fallout to Agricultural Crops. Journal of Environmental Radioactivity, 66, 155-169. https://doi.org/10.1016/S0265-931X(02)00121-2
[62]  Gudkov, D., Shevtsova, N., Dzyubenko, O., Kuzmenko, M. and Nazarov, A. (2006) Dose Rates and Effects of Chronic Environmental Radiation on Hydrobionts within the Chernobyl Exclusion Zone. In: Cigna, A.A. and Durante, M., Eds., Radiation Risk Estimates in Normal and Emergency Situations, Springer, Dordrecht, 69-76.
https://doi.org/10.1007/1-4020-4956-0_6
[63]  Tsyusko, O.V., Smith, M.H., Oleksyk, T.K., Goryanaya, J. and Glenn, T.C. (2006) Genetics of Cattails in Radioactively Contaminated Areas around Chornobyl. Molecular Ecology, 15, 2611-2625.
https://doi.org/10.1111/j.1365-294X.2006.02939.x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413