全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鱼类早期营养程序化对后期生长与代谢影响的研究进展
Research Progress on Effects of Early Life Nutritional Programming on Growth and Metabolism of Later Life in Fish

DOI: 10.12677/OJFR.2022.92007, PP. 55-64

Keywords: 营养程序化,鱼类,生长,代谢;Nutritional Programming, Fish, Growth, Metabolism

Full-Text   Cite this paper   Add to My Lib

Abstract:

动物生命早期来自内源(亲本)和外源(饲料)的营养,可引发对机体或各器官功能产生长期以至终身的影响,即营养程序化。在鱼类中,亲本性腺发育阶段和鱼苗生命早期是营养程序化的关键窗口期。从养殖的经济性、环保性和成鱼的品质角度考虑,将植物原料、碳水化合物、多不饱和脂肪酸等的营养程序化应用于鱼类的培育,将为提高鱼类生产性能提供有力支撑。本文简述了近期营养程序化对鱼类生长与代谢影响的研究概况,以期为鱼类营养调控研究与应用提供理论线索。
Early animal life, nutrition from endogenous (parent) and exogenous (feed) can trigger long-term or even lifelong effects on the body or organ function, named nutritional programming. In fish, the stage of parental gonad development and early life of larval are critical window periods for nutritional programming. From the perspective of economy, environmental protection and quality of marketable fish, the application of plant materials, carbohydrates and polyunsaturated fatty acids in the nutritional programming of fish culture will provide strong support for improving fish production. In this paper, the effects of nutritional programming on the growth and metabolism of fish were reviewed, in order to provide theoretical clues for the research and application of fish nutritional regulation.

References

[1]  Barker, D.J. and Osmond, C. (1986) Infant Mortality, Childhood Nutrition, and Ischaemic Heart Disease in England and Wales. The Lancet, 327, 1077-1081.
https://doi.org/10.1016/S0140-6736(86)91340-1
[2]  Lucas, A. (1994) Role of Nutritional Programming in Determining Adult Morbidity. Archives of Disease in Childhood, 71, 288-290.
https://doi.org/10.1136/adc.71.4.288
[3]  Lucas, A., Baker, B., Desai, M., et al. (1996) Nutrition in Pregnant or Lactating Rats Programs Lipid Metabolism in the Offspring. British Journal of Nutrition, 76, 605-612.
https://doi.org/10.1079/BJN19960066
[4]  Lucas, A. (1998) Programming by Early Nutrition: An Experimental Approach. The Journal of Nutrition, 128, 401s-406s.
https://doi.org/10.1093/jn/128.2.401S
[5]  Ozanne, S.E. (2001) Metabolic Programming in Animals: Type 2 Diabetes. British Medical Bulletin, 60, 143-152.
https://doi.org/10.1093/bmb/60.1.143
[6]  郑辉, 谢云. 代谢印记:妊娠期母体营养状况与其后代成年期肥胖关系的探讨[J]. 中华围产医学杂志, 2008, 11(3): 205-207.
[7]  Lemley, C.O., Littlejohn, B.P. and Burnett, D.D. (2021) Fetal Programming. In: Hopper, R.M., Ed., Bovine Reproduction, 2nd Edition, John Wiley & Sons, Inc., Hoboken, 339-346.
https://doi.org/10.1002/9781119602484.ch27
[8]  Symonds, M.E., Sebert, S.P., Hyatt, M.A., et al. (2009) Nutritional Programming of the Metabolic Syndrome. Nature Reviews Endocrinology, 5, 604-610.
https://doi.org/10.1038/nrendo.2009.195
[9]  Campisano, S., La Colla, A., Echarte, S.M., et al. (2019) Interplay between Early-Life Malnutrition, Epigenetic Modulation of the Immune Function and Liver Diseases. Nutrition Research Reviews, 32, 128-145.
https://doi.org/10.1017/S0954422418000239
[10]  Guilloteau, P., Zabielski, R., Hammon, H.M., et al. (2010) Nutritional Programming of Gastrointestinal Tract Development. Is the Pig a Good Model for Man? Nutrition Research Reviews, 23, 4-22.
https://doi.org/10.1017/S0954422410000077
[11]  Aguila, M.B., Ornellas, F. and Mandarim-de-Lacerda, C.A. (2021) Nutritional Research and Fetal Programming: Parental Nutrition Influences the Structure and Function of the Organs. International Journal of Morphology, 39, 327-334.
https://doi.org/10.4067/S0717-95022021000100327
[12]  吕佳琪, 华雯妤, 王恬. 胚胎营养环境对动物出生后营养代谢的调控研究[J]. 动物营养学报, 2016, 28(2): 335-344.
[13]  Yang, C., Zhou, X., Yang, H., et al. (2021) Transcriptome Analysis Reveals Liver Metabolism Programming in Kids from Nutritional Restricted Goats During Mid-Gestation. PeerJ, 9, Article ID: e10593.
https://doi.org/10.7717/peerj.10593
[14]  Cushman, R.A., Snider, A. and Crouse, M.S. (2021) Can We Developmentally Program the Epigenome to Improve Traits Relevant to Production in Cattle? Journal of Animal Science, 99, 20.
https://doi.org/10.1093/jas/skab054.035
[15]  Hou, Z. and Fuiman, L.A. (2020) Nutritional Programming in Fishes: Insights from Mammalian Studies. Reviews in Fish Biology and Fisheries, 30, 67-92.
https://doi.org/10.1007/s11160-019-09590-y
[16]  Panserat, S., Marandel, L., Seiliez, I., et al. (2019) New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annual Review of Animal Biosciences, 7, 195-220.
https://doi.org/10.1146/annurev-animal-020518-115250
[17]  Hou, Z., Lu, X., Tiziani, S., et al. (2022) Nutritional Programming by Maternal Diet Alters Offspring Lipid Metabolism in a Marine Teleost. Fish Physiology and Biochemistry, 48, 535-553.
https://doi.org/10.1007/s10695-022-01069-1
[18]  麦康森. 水产动物营养与饲料学[M] 第二版. 北京: 中国农业出版社, 2011.
[19]  Palace, V.P. and Werner, J. (2006) Vitamins A and E in the Maternal Diet Influence Egg Quality and Early Life Stage Development in Fish: A Review. Scientia Marina, 70, 41-57.
https://doi.org/10.3989/scimar.2006.70s241
[20]  Engrola, S., Arag?o, C., Valente, L.M., et al. (2018) Nutritional Modulation of Marine Fish Larvae Performance. In: Yúfera, M., Ed., Emerging Issues in Fish Larvae Research, Springer, Cham, 209-228.
https://doi.org/10.1007/978-3-319-73244-2_7
[21]  Skj?rven, K.H., Mommens, M., Adam, A.-C., et al. (2022) Earlier or Delayed Seasonal Broodstock Spawning Changes Nutritional Status and Metabolic Programming of Growth for Next-Generation Atlantic Salmon. Aquaculture, 554, Article ID: 738187.
https://doi.org/10.1016/j.aquaculture.2022.738187
[22]  Buddington, R.K., Krogdahl, A. and Bakke-McKellep, A.M. (1997) The Intestines of Carnivorous Fish: Structure and Functions and the Relations with Diet. Acta Physiologica Scandinavica. Supplementum, 638, 67-80.
[23]  Pittman, K., Yúfera, M., Pavlidis, M., et al. (2013) Fantastically Plastic: Fish Larvae Equipped for a New World. Reviews in Aquaculture, 5, S224-S267.
https://doi.org/10.1111/raq.12034
[24]  Le Boucher, R., Vandeputte, M., Dupont-Nivet, M., et al. (2013) Genotype by Diet Interactions in European Sea Bass (Dicentrarchus labrax L.): Nutritional Challenge with Totally Plant-Based Diets. Journal of Animal Science, 91, 44-56.
https://doi.org/10.2527/jas.2012-5311
[25]  Le Boucher, R., Quillet, E., Vandeputte, M., et al. (2011) Plant-Based Diet in Rainbow Trout (Oncorhynchus mykiss Walbaum): Are There Genotype-Diet Interactions for Main Production Traits When Fish Are Fed Marine Vs. Plant- Based Diets from the First Meal? Aquaculture, 321, 41-48.
https://doi.org/10.1016/j.aquaculture.2011.08.010
[26]  Xu, H., Turkmen, S., Rimoldi, S., et al. (2019) Nutritional Intervention through Dietary Vegetable Proteins and Lipids to Gilthead Sea Bream (Sparus Aurata) Broodstock Affects the Offspring Utilization of a Low Fishmeal/Fish Oil Diet. Aquaculture, 513, Article ID: 734402.
https://doi.org/10.1016/j.aquaculture.2019.734402
[27]  Balasubramanian, M.N., Panserat, S., Dupont-Nivet, M., et al. (2016) Molecular Pathways Associated with the Nutritional Programming of Plant-Based Diet Acceptance in Rainbow Trout Following an Early Feeding Exposure. BMC Genomics, 17, Article No. 449.
https://doi.org/10.1186/s12864-016-2804-1
[28]  Geurden, I., Borchert, P., Balasubramanian, M.N., et al. (2013) The Positive Impact of the Early-Feeding of a Plant- Based Diet on Its Future Acceptance and Utilisation in Rainbow Trout. PLOS ONE, 8, Article ID: e83162.
https://doi.org/10.1371/journal.pone.0083162
[29]  Izquierdo, M.S., Turkmen, S., Montero, D., et al. (2015) Nutritional Programming through Broodstock Diets to Improve Utilization of Very Low Fishmeal and Fish Oil Diets in Gilthead Sea Bream. Aquaculture, 449, 18-26.
https://doi.org/10.1016/j.aquaculture.2015.03.032
[30]  Turkmen, S., Zamorano, M.J., Fernández-Palacios, H., et al. (2017) Parental Nutritional Programming and a Reminder During Juvenile Stage Affect Growth, Lipid Metabolism and Utilisation in Later Developmental Stages of a Marine Teleost, the Gilthead Sea Bream (Sparus aurata). British Journal of Nutrition, 118, 500-512.
https://doi.org/10.1017/S0007114517002434
[31]  Kumar, S., J. Sándor, Z., Biró, J., et al. (2022) Does Nutritional History Impact on Future Performance and Utilization of Plant Based Diet in Common Carp? Aquaculture, 551, Article ID: 737935.
https://doi.org/10.1016/j.aquaculture.2022.737935
[32]  Cushman, R.A., Snider, A. and Crouse, M.S. (2016) Soybean Meal and Soy Protein Concentrate in Early Diet Elicit Different Nutritional Programming Effects on Juvenile Zebrafish. Zebrafish, 13, 61-69.
https://doi.org/10.1089/zeb.2015.1131
[33]  Clarkson, M., Migaud, H., Metochis, C., et al. (2017) Early Nutritional Intervention Can Improve Utilisation of Vegetable-Based Diets in Diploid and Triploid Atlantic Salmon (Salmo salar, L.). British Journal of Nutrition, 118, 17-29.
https://doi.org/10.1017/S0007114517001842
[34]  Kemski, M., Wick, M. and Dabrowski, K. (2018) Nutritional Programming Effects on Growth and Reproduction of Broodstock and Embryonic Development of Progeny in Yellow Perch (Perca flavescens) Fed Soybean Meal-Based Diets. Aquaculture, 497, 452-461.
https://doi.org/10.1016/j.aquaculture.2018.07.001
[35]  Molinari, G.S., Wojno, M. and Kwasek, K. (2021) The Use of Live Food as a Vehicle of Soybean Meal for Nutritional Programming of Largemouth Bass Micropterus Salmoides. Scientific Reports, 11, Article No. 10899.
https://doi.org/10.1038/s41598-021-89803-2
[36]  李海洁. 早期营养规划对黄颡鱼生长性能、肠道结构和mtor信号通路关键因子的影响[D]: [硕士学位论文]. 郑州: 河南农业大学, 2021.
[37]  Michl, S.C., Weis, B., Hutchings, J.A., et al. (2017) Plastic Responses by Wild Brown Trout (Salmo trutta) to Plant- Based Diets. Aquaculture, 476, 19-28.
https://doi.org/10.1016/j.aquaculture.2017.04.006
[38]  Kwasek, K., Wojno, M., Patula, S., et al. (2021) The Effect of First Feeding Exposure of Larval Largemouth Bass to a Formulated Soybean Meal-Based or Soy Saponin-Supplemented Diet on Fish Growth Performance and Gut Microbiome. North American Journal of Aquaculture, 83, 312-326.
https://doi.org/10.1002/naaq.10200
[39]  魏帮鸿, 杨志刚, 施秋燕, 等. 水生动物脂肪酸延长酶基因研究进展[J]. 基因组学与应用生物学, 2017, 36(10): 4159-4165.
[40]  Morais, S., Mendes, A.C., Castanheira, M.F., et al. (2014) New Formulated Diets for Solea senegalensis Broodstock: Effects of Parental Nutrition on Biosynthesis of Long-Chain Polyunsaturated Fatty Acids and Performance of Early Larval Stages and Juvenile Fish. Aquaculture, 432, 374-382.
https://doi.org/10.1016/j.aquaculture.2014.04.033
[41]  Perez, K.O. and Fuiman, L.A. (2015) Maternal Diet and Larval Diet Influence Survival Skills of Larval Red Drum Sciaenops ocellatus. Journal of Fish Biology, 86, 1286-1304.
https://doi.org/10.1111/jfb.12637
[42]  Fuiman, L.A. and Perez, K.O. (2015) Metabolic Programming Mediated by an Essential Fatty Acid Alters Body Composition and Survival Skills of a Marine Fish. Proceedings of the Royal Society B: Biological Sciences, 282, Article ID: 20151414.
https://doi.org/10.1098/rspb.2015.1414
[43]  Cardona, E., Segret, E., Cachelou, Y., et al. (2022) Effect of Micro-Algae Schizochytrium sp. Supplementation in Plant Diet on Reproduction of Female Rainbow Trout (Oncorhynchus mykiss): Maternal Programming Impact of Progeny. Journal of Animal Science and Biotechnology, 13, Article No. 33.
https://doi.org/10.1186/s40104-022-00680-9
[44]  艾立川. N-3HUFA对西伯利亚鲟亲鱼繁殖力及子代发育和脂肪代谢的影响[D]: [硕士学位论文]. 北京: 中国农业科学院, 2015.
[45]  Luo, L., Wei, H., Ai, L., et al. (2019) Effects of Early Long-Chain N-3hufa Programming on Growth, Antioxidant Response and Lipid Metabolism of Siberian Sturgeon (Acipenser baerii Brandt). Aquaculture, 509, 96-103.
https://doi.org/10.1016/j.aquaculture.2019.05.032
[46]  Krogdahl, ?., Hemre, G.I. and Mommsen, T. (2005) Carbohydrates in Fish Nutrition: Digestion and Absorption in Postlarval Stages. Aquaculture Nutrition, 11, 103-122.
https://doi.org/10.1111/j.1365-2095.2004.00327.x
[47]  Callet, T., Hu, H., Larroquet, L., et al. (2020) Exploring the Impact of a Low-Protein High-Carbohydrate Diet in Mature Broodstock of a Glucose-Intolerant Teleost, the Rainbow Trout. Frontiers in Physiology, 11, Article No. 303.
https://doi.org/10.3389/fphys.2020.00303
[48]  Gong, G., Xue, M., Wang, J., et al. (2015) The Regulation of Gluconeogenesis in the Siberian Sturgeon (Acipenser baerii) Affected Later in Life by a Short-Term High-Glucose Programming during Early Life. Aquaculture, 436, 127-136.
https://doi.org/10.1016/j.aquaculture.2014.10.044
[49]  Liang, X., Wang, J., Gong, G., et al. (2017) Gluconeogenesis during Starvation and Refeeding Phase Is Affected by Previous Dietary Carbohydrates Levels and a Glucose Stimuli during Early Life in Siberian Sturgeon (Acipenser baerii). Animal Nutrition, 3, 284-294.
https://doi.org/10.1016/j.aninu.2017.06.001
[50]  Rocha, F., Dias, J., Geurden, I., et al. (2016) High-Glucose Feeding of Gilthead Seabream (Sparus aurata) Larvae: Effects on Molecular and Metabolic Pathways. Aquaculture, 451, 241-253.
https://doi.org/10.1016/j.aquaculture.2015.09.015
[51]  Kumkhong, S., Marandel, L., Plagnes-Juan, E., et al. (2020) Glucose Injection into Yolk Positively Modulates Intermediary Metabolism and Growth Performance in Juvenile Nile Tilapia (Oreochromis niloticus). Frontiers in Physiology, 11, Article No. 286.
https://doi.org/10.3389/fphys.2020.00286
[52]  Kumkhong, S., Marandel, L., Plagnes-Juan, E., et al. (2021) Glucose Injection into the Yolk Influences Intermediary Metabolism in Adult Nile Tilapia Fed with High Levels of Carbohydrates. Animal, 15, Article ID: 100347.
https://doi.org/10.1016/j.animal.2021.100347
[53]  Xiao, Q., Li, J., Liang, X.-F., et al. (2020) Programming of High-Glucose Diet Acceptance in Chinese Perch (Siniperca chuatsi) Following an Early Exposure. Aquaculture Reports, 18, Article ID: 100534.
https://doi.org/10.1016/j.aqrep.2020.100534
[54]  Geurden, I., Aramendi, M., Zambonino-Infante, J., et al. (2007) Early Feeding of Carnivorous Rainbow Trout (Oncorhynchus mykiss) with a Hyperglucidic Diet during a Short Period: Effect on Dietary Glucose Utilization in Juveniles. American journal of physiology. Regulatory, Integrative and Comparative Physiology, 6, R2275-R2283.
https://doi.org/10.1152/ajpregu.00444.2006
[55]  方刘. 鳜鱼, 草鱼, 斑马鱼早期高糖营养程序化对糖代谢调控的研究[D]: [博士学位论文]. 武汉: 华中农业大学, 2015.
[56]  Zambonino-Infante, J.L., Panserat, S., Servili, A., et al. (2019) Nutritional Programming by Dietary Carbohydrates in European Sea Bass Larvae: Not Always What Expected at Juvenile Stage. Aquaculture, 501, 441-447.
https://doi.org/10.1016/j.aquaculture.2018.11.056
[57]  Skj?rven, K.H., Jakt, L.M., Fernandes, J.M.O., et al. (2018) Parental Micronutrient Deficiency Distorts Liver DNA Methylation and Expression of Lipid Genes Associated with a Fatty-Liver-Like Phenotype in Offspring. Scientific Reports, 8, Article No. 3055.
https://doi.org/10.1038/s41598-018-21211-5
[58]  Cleveland, B.M., Leeds, T.D., Picklo, M.J., et al. (2020) Supplementing Rainbow Trout (Oncorhynchus mykiss) Broodstock Diets with Choline and Methionine Improves Growth in Offspring. Journal of the World Aquaculture Society, 51, 266-281.
https://doi.org/10.1111/jwas.12634
[59]  Panserat, S., Marandel, L., Geurden, I., et al. (2017) Muscle Catabolic Capacities and Global Hepatic Epigenome Are Modified in Juvenile Rainbow Trout Fed Different Vitamin Levels at First Feeding. Aquaculture, 468, 515-523.
https://doi.org/10.1016/j.aquaculture.2016.11.021
[60]  Seite, S., Masagounder, K., Heraud, C., et al. (2019) Early Feeding of Rainbow Trout (Oncorhynchus mykiss) with Methionine-Deficient Diet over a 2 Week Period: Consequences for Liver Mitochondria in Juveniles. Journal of Experimental Biology, 222, Article ID: jeb203687.
https://doi.org/10.1242/jeb.203687
[61]  邓凯东, 张佑祥. 早期营养对免疫系统的长期调节作用[J]. 农业科学与技术(英文版), 2004, 5(3): 11-16.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133